摘要
为了改善细菌纤维素敷料功能单一的问题,以该纤维素为基材吸附透明质酸,再通过静电自组装聚赖氨酸,以期制备出功能型敷料。主要探讨透明质酸和聚赖氨酸的浓度比例对敷料理化性质的影响,通过红外分析、微观结构观察、含水率和水蒸气透过率等性能表征及抑菌性测定来综合评价。结果表明,该方法能够成功制备出细菌纤维素-透明质酸-聚赖氨酸复合膜。复合膜中透明质酸与聚赖氨酸结合形态以及复合膜的理化性质随着两者浓度增加而改变。透明质酸和聚赖氨酸的起始复合浓度为1 mg/mL以上时可获得更好的抑菌性,且1∶1的浓度比例能够获得满足实际使用需求的透气性和90%以上抑菌效果的复合膜,在功能敷料领域具有巨大潜力。
In order to endow new functions to BNC for wound dressing,BNC was placed in a hyaluronic acid(HA)aqueous solution to absorb HA,and then to combine with poly-lysine(PLL)through electrostatic assembly.In this paper,the influence of different concentration ratios of HA to PLL on the physical and chemical properties of the obtained composites was discussed.Infrared spectrum analysis,microscopic observation,determination of water content and water vapor transmission,and characterization of antibacterial performance was carried out.The results showed that the composite was surely successfully prepared by using this method.The morphological characters of combination of HA with PLL in the composite and the composite properties changed with the increase of both concentrations of HA and PLL.The minimum concentration of both HA and PLL was 1 mg/mL for better antibacterial activity,and the composite membranes with better vapor permeability and over 90%bacteriostatic effect,which can satisfy the requirement of practical use,could be obtained when the concentration ratio was 1∶1.The composite membranes have great potential in the field of functional dressing.
作者
方达通
陈琳
洪枫
FANG Da-tong;CHEN Lin;HONG Feng(Key Laboratory of Science&Technology of Eco-textile,Ministry of Education,Donghua University,Shanghai 201620,China;College of Chemistry,Chemical Engineering and Biotechnology,Donghua University,Shanghai 201620,China;Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology,China Textile Engineering Society,Shanghai 201620,China)
出处
《纤维素科学与技术》
CAS
CSCD
2020年第3期10-18,共9页
Journal of Cellulose Science and Technology
基金
中央高校基本科研业务费专项资金资助项目(2232019A3-08)。
关键词
细菌纤维素
透明质酸
聚赖氨酸
静电自组装
复合膜
功能敷料
bacterial nano-cellulose
hyaluronic acid
Ɛ-poly-L-lysine
electrostatic self-assembly
composite membrane
functional dressing