期刊文献+

带量化的分布式PUSH-SUM次梯度算法

Distributed Push-Sum Subgradient Algorithm with Quantized Information
下载PDF
导出
摘要 考虑了个体之间只能交换被量化过后的信息,并结合push-sum通讯机制和分布式次梯度算法,提出了带确定型量化的分布式push-sum次梯度算法,证明了当步长满足一定条件时,每个个体的状态收敛到网络最优解的邻域内.数值实验表明量化精度越高,越接近最优. In a time-varying directed graph,this paper studies the problem for minimizing the sum of several local convex objective functions,which are known to each agent accordingly.In the real communication network,due to the bandwidth limitation of communication,each agent can only exchangequantized information with its neighbors.Combining the push-sum communication mechanism and distributed subgradient algorithm,a distributed push-sum subgradient algorithm with deterministic quantization is proposedin this paper.It is proved that ifthe step size satisfies a certain condition,the state of each agent converges to the neighborhood of the optimal solution of the problem.A numerical experiment shows that the higher the quantization precision,the closer it isto the optima.
作者 黄继英 李觉友 HUANG Ji-ying;LI Jue-you(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China;Pengzhou No.1 Middle School,Pengzhou Sichuan 611930,China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第9期106-114,共9页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金青年项目(11971083) 重庆市教委科学技术研究项目(KJQN201800520).
关键词 分布式优化 量化 push-sum算法 有向网络 distributed optimization quantizer push-sum algorithm directed graph
  • 相关文献

参考文献3

二级参考文献21

  • 1高云君,李春,陈根才,陈岭,姜贤塔,陈纯.Efficient κ-Nearest-Neighbor Search Algorithms for Historical Moving Object Trajectories[J].Journal of Computer Science & Technology,2007,22(2):232-244. 被引量:4
  • 2Xiao L, Boyd S. Fast linear iterations for distributed averaging[J]. Sys and Contr Letters,2004,53 (1) :65 -78.
  • 3Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies [ J ]. IEEE Transactions on Automatica Control,2005,50(5) :655-661.
  • 4Ren W. Multi-vehicle consensus with a time-varying reference state [ J ]. Sys and Contr Letters,2007,56 (7 -8) :474-483.
  • 5Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization[J]. IEEE Transactions on Automatica Control,2009,54 ( 1 ) :48-61.
  • 6Nedic A, Olshevsky A, Ozdaglar A, et al. Distributed subgradient methods and quantization effects [ A ]. Proceedings of IEEE CDC [ C ]. Canctm, Mexico: IEEE, 2008:4177-4184.
  • 7Aysal T, Coates M, Rabbat M. Distributed average consensus using dithered quantization [ J ]. IEEE Transactions on Signal Processing, 2008, 56 ( 10 ) : 4905 -4918.
  • 8BONET B. Conformant Plans and Beyond:Principles and Complexity[ J ]. Artificial Intelligence, 2010, 174 ( 34 ) : 245 -269.
  • 9QI Houghai, ALTINAKAR M S. Integrated Watershed Management with Multiobjeetive Land-Ue Optimizations under Uncertainty[J]. Irrigation and Drainage Engineer- ing-ASCE ,2013,139( 3 ) :339-245.
  • 10SOLEIMANIAN Azam,JAJAEI Ghasemali Salmani. Ro- bust nonlinear optimization with conic representable un- certainty set [ J ]. Operational Research, 2013,228 ( 2 ) : 337 -344.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部