期刊文献+

基于智能网联汽车功能服务的推荐系统设计

Design of Recommendation System Based on Intelligent Connected Vehicle Function Service
下载PDF
导出
摘要 基于用户驾乘体验在智能网联汽车中的重要性,以及当前智能网联汽车功能服务在使用中存在的问题,介绍了一种智能网联汽车功能服务推荐系统的设计方案,包括用户在使用车辆过程中的数据采集、场景分析、功能服务匹配与推荐。该系统通过云、端能力结合,将智能网联汽车功能服务、车辆驾乘场景以及用户操作习惯进行个性化关联,利用车联网大数据实时分析,判断当前车辆所处场景,并进行关联功能服务的主动推荐。结果表明,推荐系统能够有效降低用户对于车辆功能服务的学习成本,提升功能服务使用率、驾驶安全性和驾乘体验的效果。 Based on the importance of the user’s driving experience in the intelligent connected vehicle and the problems existing in the use of the current intelligent connected vehicle function service,this paper introduces a design scheme of the intelligent connected vehicle function service recommendation system,including the data collection,scene analysis,function service matching and recommendation in the process of using the vehicle.Through the combination of cloud and terminal capabilities,the system makes personalized association of intelligent connected vehicle function services,vehicle driving scenes and user operating habits.The system uses big data of Internet of vehicles for real-time analysis to judge the current vehicle scene,and makes active recommendation of related function services.The results show that the recommendation system can effectively reduce the learning cost of users for vehicle function services,and improve the utilization rate of function services,driving safety and driving experience.
作者 程硕 CHENG Shuo
出处 《汽车工程师》 2020年第9期30-32,共3页 Automotive Engineer
关键词 智能网联汽车 功能服务 推荐系统 Intelligent connected car Function services Recommendation system
  • 相关文献

参考文献4

二级参考文献51

  • 1诸彤宇,王家川,陈智宏.车联网技术初探[J].公路交通科技(应用技术版),2011,7(5):266-268. 被引量:57
  • 2张引,陈敏,廖小飞.大数据应用的现状与展望[J].计算机研究与发展,2013,50(S2):216-233. 被引量:379
  • 3Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 4Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 5Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 6Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 7Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 8Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 9Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.
  • 10Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52.

共引文献396

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部