期刊文献+

空间同位模式重要因子判定的概念粒方法

Concept granule method for determinating significant factors of spatial co-location pattern
原文传递
导出
摘要 针对空间同位模式能求出空间实体的关联集聚现象,但不能求出组成同位模式的实体元素的贡献大小的问题,该文通过引入粒计算和概念格中的概念粒概念,把每一种同位模式的元素都看作一个概念粒。利用概念粒之间距离和概念熵的度量,在概念粒中减少实体存在的原子公式,从而计算每个空间实体对于同位模式形成的重要度。通过对组成南宁市服务业空间同位模式重要因子的实例研究,该方法能有效地求出城市服务业的空间同位模式,并能找出每一种空间同位模式的重要因子。该方法不仅能提供计算形成同位模式重要因子的数学基础,更是一种全新的思考空间关联关系的思维方式。 Although the spatial co-location pattern can find the association and aggregation of spatial entities,it can’t find out the contribution of the entity elements that make up the co-located pattern.This paper proposed a method to determine the significant factors of spatial co-location pattern based on concept granule.This method is mainly completed by with the following steps:introducing the concept granule in granular computing and concept lattice so as to find the frequent closed item sets by the concept lattice through setting the minimum support degree on the basis of the feature of each node of the concept lattice being a closed item set.The frequent closed item sets consisting of spatial neighborhoods constitute the spatial co-location pattern all of which constitute the concept granule space.Each co-located pattern is a concept granule,so when the measure of the distance between the concept granules and the concept entropy is used to reduce the atomic formula of the existence of the entity in the concept granule,the significant degree of each spatial entity for the formation of the co-located pattern can be calculated.Finally,through the verification of the significant factors of the spatial co-location pattern for the service industry in the Nanning City,among the top 10 spatial co-location patterns with the highest support of the 3-item set,although the snack food is issued 8 times,it has the lowest significant value,which proves that snack food contributes the least to the formation of spatial formation,and it doesn’t play a leading role in the service sector.Verification of the example area further validates the applicability of the method which can not only provide the mathematical basis for calculating the significant factors to the formation of the spatial co-location pattern,but also a new way of thinking about the spatial relationship,implying an instructive significance for urban industrial layout.
作者 廖伟华 蒋卫国 聂鑫 LIAO Weihua;JIANG Weiguo;NIE Xin(College of Mathematics and Information Science,Guangxi University,Nanning 530004,China;State Key Laboratory of Remote Sensing Science,Faculty of Geographical Science,Beijing Normal University.Beijing 100875,China;School of Public Administration,Guangxi University,Nanning 530004,China)
出处 《测绘科学》 CSCD 北大核心 2020年第9期52-59,共8页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41571077,71403063,71763001) 国家重点研发计划专项项目(2016YFC0503002) 广西重点研发计划项目(桂科AB18126007)。
关键词 概念粒 同位模式 重要度 概念格 粒计算 concept granule co-location pattern significant degree concept lattice granular computing
  • 相关文献

参考文献5

二级参考文献51

  • 1苏奋振,杜云艳,杨晓梅,刘宝银.地学关联规则与时空推理的渔业分析应用[J].地球信息科学,2004,6(4):66-70. 被引量:6
  • 2米红,张希雯,陈文生.基于数据挖掘平台的模糊聚类算法及应用研究[J].厦门理工学院学报,2006,14(2):17-21. 被引量:8
  • 3Okabe A, Yamada I. The K-Function Method on a Network and Its Computational Implementation[J]. Geographical Analysis, 2001, 33(3): 271- 290.
  • 4Okabe A, Okunuki K, Shiode S. SANET.. A Tool- box for Spatial Analysis on a Network[J]. Geo- graphical Analysis, 2006, 38(1) : 57-66.
  • 5Batty M. Network Geography: Relations, Interac tions, Scaling and Spatial Processes in GIS[M]// Unwin D, Fisher P. Re-presenting Geographical In- formation Systems. Chichester: John Wiley and Sons, 2005.
  • 6Yamada I,Thill J. Comparison of Planar and Net work K-Functions in Traffic Accident Analysis[J]. Journal of Transport Geography, 2004, 12 (2) : 149-158.
  • 7Lu Yongmei, Chen Xuwei. On the False Alarm of Planar K-Function when Analyzing Urban Crime Distributed Along Streets [J]. Social Science Re- search, 2007, 36(2): 611-632.
  • 8Borruso G. Network Density Estimation: A GIS Approach for Analysing Point Patterns in a Net- work Space[J]. Transactions in GIS, 2008, 12 (3) : 377-402.
  • 9Xie Zhixiao, Yan Jun. Kernel Density Estimation of Traffic Accidents in a Network Space [J]. Comput- ers, Environment and Urban Systems, 2008, 32 (5) :396-406.
  • 10Huang Yan, Shekhar S, Xiong Hui. Discovering Co-location Patterns from Spatial Data Sets: A Gen- eral Approach [J]. IEEE Transactions on Knowl- edge and Data Engineering, 2004, 16(12):1372- 1 485.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部