期刊文献+

高镍三元正极材料的包覆与掺杂改性研究进展 被引量:9

Research Progress on Coating and Doping Modification of Nickel Rich Ternary Cathode Materials
下载PDF
导出
摘要 随着新能源汽车的加速发展,镍钴锰/铝酸锂三元正极材料、特别是高镍(镍含量大于50%)材料作为后起之秀,由于其性能和成本的综合指标优于传统的钴酸锂和磷酸铁锂,引起了学术界和产业界极大的研究兴趣。但是受其本身晶体结构和表面结构的限制,三元正极材料也存在安全性较差、循环稳定性不足等缺点。近年来,科研工作者为解决这些问题、并进一步提升三元材料的性能,在材料改性技术方面开展了大量工作,取得了令人瞩目的研究成果。本文从改性元素对三元正极材料结构以及对电化学性能改善的机理出发,介绍了包覆和掺杂两种改性技术的研究进展,并在此基础上对三元正极材料的发展方向做出展望。 In recent years,the development of new energy vehicles industry is accelerating.Lithium nickel cobalt manganese/aluminum oxide ternary cathode materials(NCM/NCA),especially with the nickel content≥50%,has aroused great interest in both academia and industry.This is mainly due to the fact that the aggregative parameters of performance and cost of NCM/NCA are superior to those of traditional cathode materials,such as LiCoO2 and LiFePO4.However,the application of NCM/NCA is affected by a number of drawbacks,including poor safety and insufficient cycle stability and so on,which are mainly attributed to its crystal and surface structure.Researchers have carried out various efforts to solve these problems and further improve the performance of NCM/NCA.Some remarkable results have been achieved in the past few years.In this review,the latest research progress on coating and doping of Ni-rich ternary cathode materials is summarized from the view on the mechanism of structural and electrochemical improvement of NCM/NCA.Finally,the perspective for the development of NCM/NCA cathode materials is also prospected.
作者 柏祥涛 班丽卿 庄卫东 BAI Xiangtao;BAN Liqing;ZHUANG Weidong(China Automotive Battery Research Institute Co.,Ltd,Beijing 101407,China;General Research Institute for Nonferrous Metals,Beijing 100088,China)
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2020年第9期972-986,共15页 Journal of Inorganic Materials
基金 国家重点研发计划—新能源专项(2016YFB0100400)。
关键词 镍钴锰酸锂 包覆 掺杂 机理 lithium nickel cobalt manganese oxide coating doping mechanism
  • 相关文献

参考文献5

二级参考文献68

  • 1张宝,王志兴,郭华军.Effect of annealing treatment on electrochemical property of LiNi_(0.5)Mn_(1.5)O_4 spinel[J].中国有色金属学会会刊:英文版,2007,17(2):287-290. 被引量:1
  • 2Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419-2430.
  • 3Sun, Y.-K.; Myung, S.-T.; Park, B.-C.; Prakash, J.; Belharouak, I.; Amine, K. High energy cathode material for long life and safe lithium ion battery. Nat. Mater. 2009, 8, 320-324.
  • 4Chen, C. H.; Liu, J.; Stoll, M. E.; Henriksen, G.; Vissers, D. R.; Amine, K. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. Ji Power Sources 2004, 128, 278 285.
  • 5Woo, S.-W.; Myung, S.-T.; Bang, H.; Kim, D.-W.; Sun, Y.-K. Improvement of electrochemical and thermal properties of Li[Ni0.8Co01Mn0.1]O2 positive electrode materials by multiple metal (A1, Mg) substitution. Electrochim. Acta 2009, 54, AI63-A166.
  • 6Kunduraci, M.; A1-Sharab, J. F.; Amatucci, G. G. High- power nanostructured LiMn2 xNixO4 high-voltage lithium-ion battery electrode materials: Electrochemical impact of electronic conductivity and morphology. Chem. Mater. 2006, 18, 3585-3592.
  • 7Reimers, J. N.; Dahn, J. R. Electrochemical and in-situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 1992, 139, 2091-2097.
  • 8Chen, Z.; Dahn, J. R. Method to obtain excellent capacity retention in LiCoOz cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079-1090.
  • 9Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State lonics 1996, 83, 167-173.
  • 10Jiang, J.; Dahn, J. R. ARC studies of the reaction between LioFePO4 and LiPF6 or LiBOB EC/DEC electrolytes. Electrochem. Commun. 2004, 6, 724728.

共引文献79

同被引文献60

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部