期刊文献+

针栓式喷注器单元液/液撞击的一次破碎形态的仿真研究 被引量:8

Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray
原文传递
导出
摘要 目的:针对液/液针栓式喷注器单元,研究其在不同径向射流喷注速度下的一次破碎形态,并阐明在一次破碎下喷雾半锥角的形成、压力场分布、喷雾粒径分布与速度场分布。创新点:通过流体体积函数转换离散相(VOF-to-DPM)模型,结合网格自适应(AMR)技术还原了针栓式喷注器单元液/液撞击的一次破碎形态。方法:1.通过VOF-to-DPM模型完成一次破碎过程中对液相的捕捉;2.采用计算流体动力学后处理(CFD-post)模块进行后处理,得到一次破碎下喷雾半锥角的形成以及压力场、喷雾粒径与速度场的分布云图;3.在仿真计算过程中使用AMR技术减少计算量,节约时间成本与计算资源。结论:1.速度大的径向射流在穿透轴向液膜后会形成一个蘑菇状的头部;扰动在蘑菇状顶端下方形成涡,有助于蘑菇状顶端边缘破碎的发生。2.气动力和表面张力对轴向液膜破碎过程中产生的直液丝和环状液丝的破碎起到重要作用;由于液滴的聚合现象,轴向液膜的直径在破碎过程中并不是单调递减的。3.喷雾半锥角的大小和径向射流速度的大小成正比;一次破碎首先发生在轴向液膜前沿、径向射流头部以及撞击点附近。4.在表面张力的作用下,轴向液膜内边缘的速度较小,直径较大;当径向射流的速度增大时,轴向液膜内边缘的速度值减小得更加明显。 Primary breakup in a liquid-liquid pintle injector element at different radial jet velocities is investigated to elucidate the impingement morphology,the formation of primary breakup spray half cone angle,the pressure distribution,the liquid diameter distribution,and the liquid velocity distribution.With a sufficient mesh resolution,the liquid morphology can be captured in a physically sound way.A mushroom tip is triggered by a larger radial jet velocity and breakup happens at the tip edge first.Different kinds of ligament breakup patterns due to aerodynamic force and surface tension are captured on the axial sheet.A high pressure core is spotted at the impinging point region.A larger radial jet velocity can feed more disturbances into the impinging point and the axial sheet,generate stronger vortices to promote the breakup process at a longer distance,and form a larger spray half cone angle.Because of the re-collision phenomenon the axial sheet diameter does not decrease monotonically.The inner rim on the axial sheet shows a larger diameter magnitude and a lower velocity magnitude due to surface tension.This paper is expected to provide a reference for the optimum design of a liquid-liquid pintle injector.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第8期684-694,共11页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 supported by the National Natural Science Foundation of China(No.11572346)。
关键词 针栓式喷注器单元 液/液撞击 一次破碎 VOF-to-DPM模型 AMR技术 Pintle injector element Liquid-liquid impingement Primary breakup Volume of fluid-to-discrete phase model(VOF-to-DPM)simulation Adaptive mesh refinement(AMR)method
  • 相关文献

参考文献1

二级参考文献7

  • 1G. A. Dressier and J. M. Bauer, TRW Pintle Engine Her- itage and Performance Characteristics, 36th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference and Ex- hibit, Huntsville, AL, 2000.
  • 2R. Gilroy and R. Sackheim, The Lunar Module Descent engine-A Historical Summary, 25th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit, Monte- rey, CA, 1989.
  • 3M. J. Casiano, J. R. Hullo, and V. Yang, Liquid-Propell- ant Rocket Engine Throttling: A Comprehensive Review, Journal of Propulsion and Power, Vol. 26, No. 5, 2010.
  • 4J. Calvignac, L. Dang, T. L. Tramel, and L. Paseur, De- sign and Testing of Non-Toxic RCS Thrusters For Second Generation Reusable Launch Vehicle, 39th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, 2003.
  • 5J. M. Gromski, A. N. Majamaki, S. t2 Chianese, V. D. Weinstock and T. S. Kim, Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 2010.
  • 6M. J. Bedard, T. W. Feldman, A. Rettenmaier, and W. Anderson, Student Design/Build/Test of a Throttleahle LOX-LCH4 Thrust Chamber, 48th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Atlanta, GA, 2012.
  • 7B. L. Austin, S. D. Heister, and W. E. Anderson, Charac- terization of Pintle Engine Performance for Nontoxic Hypergolic Bipropellants, Journal of Propulsion and Power, Vol. 21, No. 4, 2005.

共引文献26

同被引文献80

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部