摘要
G的k-模色和(α,β)-边染色是指按模色和能诱导出G的β-距离点染色的G的k-α-距离边染色,最小的k值称为G的模色和(α,β)-边色数,记为ind mα,β(G),其中颜色集合为{0,1,…,k-1}.当α=β=2时,G的模色和(α,β)-边染色也叫孪生强边染色,记为ind m 2,2(G).通过研究有限路的半强积的孪生强边染色,得到了相应的染色数.
k-α-distance edge colorings of a graph G that can induceβ-distance vertex coloring of G by module color sum,which is called k-modulecolor sum(α,β)-edge coloringof graph G.The minimum k is called modulecolor sum(α,β)-edge chromatic number of graph G,defined by ind mα,β(G),where the color sets is{0,1,…,k-1}.The edge coloring of graph G is called twin strong edge coloring whenα=β=2,defined by ind mα,β(G).We studied that twin strong edge coloring for the semistrong product of infinite paths,and it's twin strong chromatic number was obtained.
作者
杨环
YANG Huan(Faculty of Network Science,Haikou University of Economics,Haikou 570100,China)
出处
《西北民族大学学报(自然科学版)》
2020年第3期17-19,89,共4页
Journal of Northwest Minzu University(Natural Science)
关键词
模色和(α
β)-边染色
孪生强边染色
路
半强积
Modulecolor sum(α,β)-edge coloring
Twin strong edge coloring
Paths
Semistrong product