期刊文献+

Hybrid embedding and joint training of stacked encoder for opinion question machine reading comprehension 被引量:1

原文传递
导出
摘要 Opinion question machine reading comprehension(MRC)requires a machine to answer questions by analyzing corresponding passages.Compared with traditional MRC tasks where the answer to every question is a segment of text in corresponding passages,opinion question MRC is more challenging because the answer to an opinion question may not appear in corresponding passages but needs to be deduced from multiple sentences.In this study,a novel framework based on neural networks is proposed to address such problems,in which a new hybrid embedding training method combining text features is used.Furthermore,extra attention and output layers which generate auxiliary losses are introduced to jointly train the stacked recurrent neural networks.To deal with imbalance of the dataset,irrelevancy of question and passage is used for data augmentation.Experimental results show that the proposed method achieves state-of-the-art performance.We are the biweekly champion in the opinion question MRC task in Artificial Intelligence Challenger 2018(AIC2018).
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第9期1346-1355,共10页 信息与电子工程前沿(英文版)
基金 Project supported by the China Knowledge Centre for Engineering Sciences and Technology(No.CKCEST-2019-1-12) the National Natural Science Foundation of China(No.61572434)。
  • 相关文献

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部