期刊文献+

应用遗传算法优化Gabor滤波器的机织物疵点检测 被引量:10

Woven Fabric Defect Detection Using Gabor Filter Optimized by Genetic Algorithm
下载PDF
导出
摘要 针对传统人工检测机织物疵点时准确率低的问题,提出一种采用遗传算法优化Gabor滤波器的方法用于机织物疵点检测。该方法分为两个阶段:在学习阶段,采用遗传算法对构造的Gabor滤波器参数(f 0,B,λ)进行优化,得到一组优化参数;在检测阶段,应用该组优化参数构造的Gabor滤波器对待检测的织物图像进行滤波处理获得特征图像。将特征图像进行融合,并对融合后图像进行阈值分割,检测出该图像是否存在疵点。为验证该方法的有效性,对采集的60幅含有断经、粗纬和跳纱等几类常见疵点图像进行检测,并与其他算法检测效果进行对比。结果表明,该方法疵点检测准确率达到96.67%,且能更准确快速地检测出织物疵点,证实了该方法的有效性。 Aiming at the low accuracy of traditional manual detection of fabric defects,a genetic algorithm optimization Gabor filter is proposed for woven fabric defect detection.The method was divided into two stages:in the learning stage,the genetic algorithm was used to optimize the constructed Gabor filter parameters(fo,β,λ)to obtain a set of optimization parameters;in the detection stage,the Gabor filter constructed by the optimized parameters was applied to the fabric image to be detected.A filtering process was performed to obtain feature images,then the feature images was fused,and the fused image was subjected to threshold segmentation to detect whether the image had defects.In order to verify the effectiveness of the method,sixty kinds of common defect images including warp,coarse weft and jump yarn were detected and compared with other algorithms.The results show that the detection accuracy of the method reaches to 96.67%,and the fabric defects can be detected accurately and quickly.Thus the effectiveness of the method is clarified.
作者 周文明 周建 潘如如 ZHOU Wenming;ZHOU Jian;PAN Ruru(College of Textiles and Clothing,Jiangnan University,Wuxi 214122,China)
出处 《东华大学学报(自然科学版)》 CAS 北大核心 2020年第4期535-541,共7页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(61501209) 中央高校基本科研业务费专项资金资助项目(JUSRP51631A)。
关键词 疵点检测 优化Gabor滤波器 遗传算法 阈值分割 defect detection optimized Gabor filter genetic algorithm threshold segmentation
  • 相关文献

参考文献1

二级参考文献5

  • 1Hong L,Wan Y,Jain A K.Fingerprint image enhancement:algorithm and performance evaluation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,24(8):777-789.
  • 2Jain A K.Farrokhniaf.Unsupervised texture segmentation using Gabor filters[J].Pattern Recognition,1991,24(12):1186-1187.
  • 3Gabor D.Theory of communication[J].Journal of the Institute of Electrical Engineers,1946,93(26):429-457.
  • 4Bovik A C,Clark M,Geisler W S.Multichannel texture analysis using localized spatial filters[J].IEEE Trans Pattern Anal Machine Intell,1990,55(12):798-805.
  • 5Vutipong Areekul,Ukrit Watchareeruetal.Fast separable gabor filter for fingerprint enhancement[A].In:ICBA 2004[C].LNCS 3072,2004.403-409.

共引文献16

同被引文献68

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部