期刊文献+

一类含有未知导函数的积分不等式中未知函数的界

The bound of an unknown function of a class of integral inequalities with unknown derivative function
下载PDF
导出
摘要 研究了一类非线性积分不等式,其中被积函数中含有未知函数的方幂及其导函数的幂次,积分号外包含了常数项和非常数项。通过放大、变量代换、求导、积分等分析方法,给出了积分不等式中未知函数的界。 A class of nonlinear integral inequalities is established,which includes the power of unknown function and its derivative function in integral function,and a nonconstant factor and a constant factor are included outside integral sign.The bound of the unknown function in the integral inequality is estimated explicitly using the techniques of variable substitution,amplification,derivation and integration.
作者 蒲可莉 PU Ke-li(Department of Mathematics,Aba Teachers College,Wenchuan 623002,China)
出处 《湖北师范大学学报(自然科学版)》 2020年第3期15-19,共5页 Journal of Hubei Normal University:Natural Science
基金 国家自然科学基金(11861001) 四川省应用基础研究项目(2018JY0458) 四川省高校科研创新团队建设设计(18TD0047) 阿坝师范学院校级项目(ASB18-02,201909001)。
关键词 积分不等式 导函数 积分 integral inequality derivative function integration bound
  • 相关文献

参考文献5

二级参考文献33

  • 1Qinghua Ma (Faculty of Information Science and Technology,Guangdong University of Foreign Studies,Guangzhou 510420) Enhao Yang(Dept. of Math.,Jinan University,Guangzhou 510632).BOUNDS ON SOLUTIONS TO SOME NONLINEAR VOLTERRA INTEGRAL INEQUALITIES WITH WEAKLY SINGULAR KERNELS[J].Annals of Differential Equations,2011,27(3):352-360. 被引量:4
  • 2YoungHoKIM.On Some New Integral Inequalities for Functions in One and Two Variables[J].Acta Mathematica Sinica,English Series,2005,21(2):423-434. 被引量:7
  • 3严勇.一类非连续函数的Bellman—Bihari型积分不等式的推广及应用[J].四川I大学学报:自然科学版,2012,49(6):1219.
  • 4Gronwall T H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations [ J ]. Ann Math, 1919,20(4) :292 - 296.
  • 5Bellman R. The stability of solutions of linear differential equations [ J ]. Duke Math J, 1943,10 : 643 - 647.
  • 6Bihari I. A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations [ J 1. Acta Math Acad Sci Hang, 1956,7:81 -94.
  • 7Pachpatte B G. A note on Gronwall- Bellman inequality[J]. J Math Anal App1,1973 ,44 :758 - 762.
  • 8Lipovan O. A retarded Gronwall- like inequality and its applications[J] J Math Anal Appl,2000,252( 1 ) :389 -401.
  • 9Agarwal R P, Deng S, Zhang W. Generalization of a retarded GronwaU - like inequality and its applications [ J ]. Appl Math Corn- put ,2005,165 ( 3 ) :599 - 612.
  • 10Dannan F. Integral inequalities of Gronwall - Bellman - Bihari type and asymptotic behavior of certain second order nonlinear dif- ferential equations[J]. J Math Anal Appl,1985,108 1) :151 -164.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部