期刊文献+

基于多源异构信息迁移学习的融合故障诊断方法 被引量:1

Fusion Fault Diagnosis Method Based on Multi-Source Heterogeneous Information Transfer Learning
下载PDF
导出
摘要 基于深度学习的故障诊断模型的精确度依赖于带标签的样本数量和信息使用方式。实际的工业控制获取的数据往往既有一维的信号序列又有二维的图像。基于深度学习的故障诊断方法仅利用一类数据进行故障诊断会造成信息的浪费,需要将多源异构信息进行融合。但工业控制中带标签的故障样本量很少,仅利用故障样本不能获得精度较高的故障诊断模型。迁移学习是运用已有的知识对不同但相关领域问题进行求解的一种新方法。通过迁移学习,利用在ImageNet数据集中训练好的VGG16网络作为特征抽取器,提取故障图像的特征,然后将故障图像特征和一维信号特征进行融合,以获得一个精确率较高的故障诊断模型。使用凯斯西储大学轴承数据集证明了该方法的有效性。 The accuracy of the fault diagnosis model based on deep learning depends on the number of labeled samples and the way of information using.The data obtained in industrial control often have both one-dimensional signal sequences and two-dimensional images.The fault diagnosis method based on deep learning only uses one kind of data for fault diagnosis,which will cause the waste of information.Therefore,multi-source heterogeneous information needs to be fused.However,the number of labeled fault samples in industrial control is very small,by which a high-precision fault diagnosis model could not be obtained.Transfer learning is a new method to solve problems in different but related fields using existing knowledge.Through transfer learning,the VGG16 network trained in the ImageNet data set is used as a feature extractor to extract the feature of the fault image,and then the fault image feature and one-dimensional signal feature are fused to obtain a fault diagnosis model with high accuracy.In this paper,the effectiveness of this method is proved by using the Case Western Reserve University bearing data set.
作者 陈丹敏 周福娜 王清贤 CHEN Danmin;ZHOU Funa;WANG Qingxian(Information Engineering University, Zhengzhou 450001, China;Shanghai Maritime University, Shanghai 201306, China)
出处 《信息工程大学学报》 2020年第2期153-158,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(U1604158)。
关键词 迁移学习 多源异构 故障诊断 transfer learning multi-source heterogeneous fault diagnosis
  • 相关文献

参考文献3

二级参考文献94

  • 1叶斌,雷燕.关于BP网中隐含层层数及其节点数选取方法浅析[J].商丘职业技术学院学报,2004,3(6):52-53. 被引量:30
  • 2SUN Yan-jing ZHANG Shen MIAO Chang-xin LI Jing-meng.Improved BP Neural Network for Transformer Fault Diagnosis[J].Journal of China University of Mining and Technology,2007,17(1):138-142. 被引量:41
  • 3袁胜发,褚福磊,何永勇.基于网格支持矢量机的涡轮泵多故障诊断[J].机械工程学报,2007,43(4):152-158. 被引量:9
  • 4嵇斗,王向军.基于D-S证据理论和BP算法的直流电机故障诊断研究[J].船电技术,2007,27(4):204-206. 被引量:6
  • 5Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 6Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 7Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 8Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 9Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 10Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].

共引文献564

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部