期刊文献+

基于深度学习的低成本堆叠物料定位系统 被引量:5

A Low-Cost Location System Based on Deep Learning for Stacked Materials Sorting
下载PDF
导出
摘要 针对堆叠物料无序分拣中传统定位方法硬件成本高、检测精度低等问题,设计了一种基于深度学习的堆叠物料定位系统.以单目光学相机采集得到的图像作为输入数据,利用单阶段检测算法得到候选目标,采用卷积神经网络进行目标筛选,最后对筛选后的目标感兴趣区域图像进行特征点回归,得到目标的类别、坐标和角度.堆叠物料定位系统由于无需昂贵的深度相机,且算法的鲁棒性较高,降低了硬件成本,提高了检测精度.在真实场景的测试结果显示,新系统的定位误差降低到了0.3 cm以内. To improve industrial production efficiency,a low-cost location system based on deep learning was proposed for stacked materials sorting.Firstly,taking the images got from monocular optical cameras as the input data,a one-stage detection method was used to obtain the candidate objects.Then,a deep convolution neural network was used to classify the adjacent ROIs of objects to filter the possible candidates.Finally,some interest images of the filtered candidates were processed to get the key shape and location of the object.Since the robustness of the algorithm and without the use of the expensive depth camera,the new method can reduce hardware cost and improve detection accuracy.The test results in the real scene show that the location error of the new system can be reduced to less than 0.3 cm.
作者 田立勋 刘雄飞 张彩芹 王文佳 傅建中 TIAN Li-xun;LIU Xiong-fei;ZHANG Cai-qin;WANG Wen-jia;FU Jian-zhong(School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China;Hangzhou Youngsun Intelligent Equipment Co., Ltd., Hangzhou, Zhejiang 310058, China;BeijingXianjian Technology Co., Ltd., Beijing 100070,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第9期963-969,共7页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61575020)。
关键词 深度学习 目标检测 无序分拣 deep learning object detection bin-picking
  • 相关文献

参考文献2

二级参考文献14

  • 1Collins R, Lipton A, Kanade T, et al. A system for video surveillance and monitoring: VSAM final report, CMU-RI-TR-00-12[R]. Pittsburgh PA: Carnegie Mellon University, 2000.
  • 2Haritaoglu I, Harwood D, Davis L. W4: real-time surveillance of people and their activitiesEJ3. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22(8) : 809 - 830.
  • 3McKenna S, Jabri S, Duric Z, et al. Tracking groups of people[J]. Computer Vision and Image Understanding, 2000,80(1) :42 - 56.
  • 4Wren C, Azarbayejani A, Darrell T, et al. Pfinder: real-time tracking of the human body[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) : 780 - 785.
  • 5Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video[C]// IEEE Workshop on Applications of Computer Vision. Princeton, USA: [s.n.], 1998:8-14.
  • 6Anderson C, Bert P, Vander W. Change detection and tracking using pyramids transformation techniques[C]// Proc of SPIE Conference on Intelligent Robots and Corn puter Vision. Cambridge, MA, USA: [s. n.], 1985, 579:72 - 78.
  • 7Yu T I., Zhang Y J. Motion feature extraction for content-based video sequence retrieval[C]//Proc of SPIE. Washington, USA:[s. n. ], 2001:378 - 388.
  • 8Horn B K P, Schunck B G. Determining optical flow [J]. Artificial Intelligence, 1981,17 : 185 - 203.
  • 9Fujita M, Kuroki Y, Ishida T. Autonomous behavior control architecture of entertainment humanoid robot SDR-4X[C]//Proc of the IEEE/RSJ International Conference on Intelligent Robots and System. Tsukuba, Japan:[s, n. ], 2003.-960 -967.
  • 10Huang Q, Sugano S, Tanie K. Stability compensation of a mobile manipulator by manipulator motion., feasibility and planning[J]. Adv Robot, 1999,13 ( 1 ) : 25 -40.

共引文献24

同被引文献44

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部