期刊文献+

融合边缘信息的合成孔径雷达图像超像素分割算法 被引量:2

Synthetic Aperture Radar Image Superpixel Segmentation Algorithm Based on Edge Information Fusion
下载PDF
导出
摘要 针对简单线性迭代聚类(simple linear iterative cluste,SLIC)对含有乘性相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想的问题,在SLIC基础上提出了一种融合边缘信息的SAR图像超像素分割算法。首先,利用高斯方向平滑对SAR图像进行预处理,从而在抑制乘性相干斑噪声的同时有效保护边缘细节;其次,提出了一种基于指数加权平均比率(ratio of exponential weighted average,ROEWA)算子的改进相似度测量参量,以提高SAR图像的分割精度;最后,采用六边形初始化聚类中心与圆形区域的搜索方式进行局部区域聚类,从而保证了算法复杂度增加的同时,算法的运行时间不会明显变化。实验结果表明:与4种经典超像素算法相比,本文算法生成的超像素边缘更加贴合SAR图像的真实边缘且得到的超像素大小较为均匀。 Aiming at the problem thatsimple linear iterative cluster(SLIC)superpixel algorithm is not ideal for edge segmentation of synthetic aperture radar images with multiplicative coherent speckle noise,a synthetic aperture radar(SAR)image superpixel segmentation algorithm fusing edge information was proposed based on SLIC.Firstly,the SAR image was pre-processed with Gaussian direction smoothing to effectively protect edge details while suppressing multiplicative coherent speckle noise.Secondly,an improved similarity measurement parameter was introduced based on the ROEWA operator,which improved the accuracy of the SAR image segmentation.Finally,local area clustering was performed by a hexagonal initialization cluster center and circular area search method,thereby ensuring that the algorithm complexity did not increase while the algorithm running time did not change significantly.The experimental results show that compare with the four classic superpixel methods,the superpixel edges generate by the algorithm is more closely fit the true edges of SAR images and the obtained superpixel sizes are more uniform.
作者 冯于珍 朱磊 姚佳旭 李敬曼 FENG Yu-zhen;ZHU Lei;YAO Jia-xu;LI Jing-man(College of Electronics and Information,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《科学技术与工程》 北大核心 2020年第24期9947-9953,共7页 Science Technology and Engineering
基金 国家自然科学基金(61971339) 陕西省科技厅重点研发计划(2019GY-113) 西安市科技计划(201805030YD8CG14(6))。
关键词 合成孔径雷达图像 超像素分割 简单线性迭代聚类 方向高斯平滑 指数加权平均比率算子 synthetic aperture radar image superpixel segmentation simple linear iterative clust directional Gaussian smoothing ratio of exponential weighted average operator
  • 相关文献

参考文献5

二级参考文献55

  • 1Oliver C. Understanding synthetic aperture radar image. Boston London :Arrech House, 1998.
  • 2Charles H, Fosgate, Hamid Krim,et al. Muhiscale segmentation and anomaly enhancement of SAR imagery. IEEE Transactions on Image Processing. 1997 ;6 ( 1 ) :7-20.
  • 3Choi H. Baraniuk R G. Muhiscale image segmentation using wavelet 2 domain hidden markov models. IEEE Transactions on Image Processing , 2001 ;10 (9) :1309-1321.
  • 4Wu, Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993; 15 (11) :1101-1113.
  • 5Touzi R, Lopes A, Bousquet P. A statistical and geometrical edge detector for SAR images. IEEE Transactions on Geoscience and Remote Sensing. , 1988, 26(6) :764-773.
  • 6章毓晋.图像分割[M].北京:科学出版社,2000.9-106.
  • 7FELAENSZW ALB P , HUTIENLOCHER D. Efficient graph-based image segmentation[J]. InternationalJournal of Computer Vision, 2004, 59 ( 2) : 167 -181.
  • 8MOORE A , PRINCE S. Superpixel lattices[C]. IEEE Conference on Computer Vision and Pattern Recognization ,2008: 1-8.
  • 9VEDALDI A, SOA TIO S. Quick shift and kernel methods for mode seeking[C]. European Conference on Computer Vision, Springer Berlin Heidelberg, 2008 : 705-718.
  • 10LEVINSHTEIN A, STERE A, KUTULAKOV K , et al. Turbopixels , Fast superpixels using geometric flows[J] . IEEE Transactions onpattern anallysis and Machineintelligence , 2009, 31 (12) : 2290-2297.

共引文献27

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部