期刊文献+

一种基于多目标的容器云任务调度算法 被引量:6

A scheduling algorithm based on multi-objective container cloud task
原文传递
导出
摘要 为解决容器云调度模型面向同构任务、同构资源和单一目标造成的不实用、不公平、不高效、不均衡问题,提出带约束修复的树形调度目标模型,基于异构任务和异构资源,采用约束修复避免映射方案不可行,采用优先级综合多个子目标并将其归属于不同树形分支下的子空间,最终实现多个上层应用框架之间的公平、高效、节约、均衡调度模型。试验结果表明,带约束修复的树形调度目标模型在公平度上不比其它对比单目标模型差,可满足更多的任务的需求,并在此前提下拥有更高的资源利用率和负载均衡度,在实用性、公平性、高效与均衡上优于单目标模型,可有效保证公平分配资源,增加容器服务收益,降低物理资源成本,提高稳定性和可用性。 In order to solve the unrealistic,unfair,inefficient and unbalanced problems caused by container cloud scheduling model facing isomorphic tasks,isomorphic resources and single objectives,a tree scheduling objective model with constraint repair was proposed.Based on heterogeneous tasks and resources,constraint repair was adopted to avoid the impracticability of mapping scheme,and then priority to synthesize multiple sub-goals and attributed them to sub-spaces under different tree branches,and eventually achieved a fair,efficient,economical and balanced scheduling model among multiple upper application frameworks.The experimental results showed that the tree scheduling objective model with constrained repair was not inferior to other single-objective models in fairness,which could meet more tasks,and had higher resource utilization and load balancing under the preceding conditions.It was superior to the single-objective model in practicability,fairness,efficiency and balancing and ensured fair allocation of resources,which increased the benefits of container services,decreased the cost of physical resources,increased the stability and availability.
作者 谢晓兰 王琦 XIE Xiaolan;WANG Qi(College of Information Science and Engineering,Guilin University of Technology,Guilin 541006,Guangxi,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2020年第4期14-21,共8页 Journal of Shandong University(Engineering Science)
基金 2017年度国家自然科学基金(61762031) 广西创新驱动重大专项(桂科AA19046004) 广西“嵌入式技术与智能系统”重点实验室主任基金(2018A-03) 广西研究生教育创新计划项目(YCSW2017156)。
关键词 容器云 调度 智能控制 多目标 container cloud scheduling intelligent control multi-object
  • 相关文献

参考文献7

二级参考文献50

  • 1张晓杰,孟庆春,曲卫芬.基于蚁群优化算法的服务网格的作业调度[J].计算机工程,2006,32(8):216-218. 被引量:17
  • 2李文雅,欧宜贵.层次分析法在求解某些优化问题中的应用[J].高等数学研究,2007,10(1):62-64. 被引量:12
  • 3王天擎,谢军,曾洲.基于蚁群算法的网格资源调度策略研究[J].计算机工程与设计,2007,28(15):3611-3612. 被引量:8
  • 4Dorigo M, Caro GD. Ant colony optimization: A new meta--heuristic [A]. Proc. of the 1999 Congress on Evolutionary Computation [C]. Washington: IEEE Press, 1999. 1470- 1477.
  • 5CloudSim: A Framework for Modeling and Sim-- ulation of Cloud Computing Infrastructures and Services Introduction [EB/OL]. http: //www. buyya, com/gri dbus/.
  • 6Kenney J,Eberhart R.Particle Swarm Optimization[C] //Proc.of IEEE International Conf.on Neural Networks.Perth,USA:[s.n] ,1995.
  • 7Myerson J M.Cloud Computing Versus Grid Computing[EB/OL].[2010-10-12].http://www.ibm.com/developerworks/web/library/wa-cloudgrid/.
  • 8CLOUDS Lab.A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services Introduction[EB/OL].[2010-10-12].http://www.buyya.com/gridbus/cloudsim/.
  • 9Michael I,Vijayan P,Jon C ,et al. Quincy:Fair scheduling for distributed computing clusters [ C ]//Proceedings of the 22nd ACM SIGOPS Symposium on Operating Systems Principles. US,2009:261 - 276.
  • 10Joel W, Deepak R, Kirsten H, et al. FLEX: A slot allocation scheduling optimizer for MapReduee workloads [ C ]//Proceedings of International Middleware Conference. Germany,2010 : 1 - 20.

共引文献158

同被引文献49

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部