期刊文献+

采用卷积神经网络的低风险可行地貌分类方法 被引量:2

Low-risk terrain classification based on convolutional neural network
下载PDF
导出
摘要 针对现有识别方法中风险地貌误判率高、手动地貌特征提取具有局限性等问题,提出了用于室外移动机器人的低风险地貌识别策略.该策略以降低移动机器人遇险率为高优先级目标,采用双重验证策略,首先采用多分类器对所有地貌进行识别,其后使用二分类器对多分类结果中的安全地貌再次鉴别.基于该策略,分别设计了2个卷积神经网络(CNN),Terrain–CNNⅠ用于多分类识别,Terrain–CNNⅡ则用于二分类安全确认.为解决地貌样本相对稀缺问题,收集了包含水面、草地、泥地、柏油路、沙地、碎石路共6类地貌图像,通过数据增强方式快速扩充数据集用于网络的训练与测试.实验结果表明:所述方法在维持整体地貌识别率很高的前提下,显著降低了关键危险地貌的误判率. To deal with the limitations of manual feature extraction and high misjudgement rate of risky terrain in existing recognition methods,a low-risk terrain recognition strategy is proposed to classify the outdoor terrains for mobile robots.This strategy,regarding risk reduction as the primary objective,is dual-verificated.Firstly,a multiple classifier is used to identify all terrains,and then a binary classifier is used to identify the safe terrains in the multi-classification results to reduce the misjudgment of risk terrain.Based on this strategy,two convolutional neural networks are designed,the Terrain–CNNⅠfor multi-classification of recognition,and the Terrain–CNNⅡfor two-classification of safety confirmation.In addition,in order to solve the problem of terrain samples,six kinds of terrain images including water surface,grassland,mud,asphalt,sand and gravel road are collected.After data enhancement,these samples are divided into training samples and testing samples for networks’training and testing.The experimental results show that the proposed method can significantly reduce the error rate of critical risky terrains while maintaining a high average accuracy.
作者 张琪安 张波涛 吕强 王亚东 ZHANG Qi-an;ZHANG Bo-tao;Lü Qiang;WANG Ya-dong(School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China;Institute of Intelligent Systems and Control,Zhejiang University,Hangzhou Zhejiang 310058,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第9期1944-1950,共7页 Control Theory & Applications
基金 浙江省重点研发项目(2019C04018) 浙江省自然科学基金项目(LY18F030008) 国家自然科学基金项目(61503108)资助。
关键词 移动机器人 地貌识别 低风险地貌 卷积神经网络 mobile robot terrain classification low-risk terrain convolutional neural network
  • 相关文献

参考文献6

二级参考文献52

  • 1许宏岩,付宜利,王树国.局部地形变化检测与移动机器人的行为决策[J].控制与决策,2005,20(8):951-954. 被引量:4
  • 2张学工.模式识别[M].3版.北京:清华大学出版社,2010.
  • 3CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 4Vandapel N, Huber D F, Kapuria A,et al. Natural terrain clas-sification using 3-D ladar data[C]/AEEE International Confer-ence on Robotics and Automation. Piscataway, NJ, USA: IEEE,2004: 5117-5122.
  • 5Wilcox B H. Non-geometric hazard detection for a Mars micro-rover[C]//Proceedings of the Conference on Intelligent Roboticsin Field, Factory, Service, and Space, vol.2. Washington, DC,USA: NASA, 1994: 675-684.
  • 6Iagnemma K, Brooks C A, Dubowsky S. Visual, tactile, andvibration-based terrain analysis for planetary rovers[C]/AEEEAerospace Conference. Piscataway, NJ, USA: IEEE, 2004: 841-848.
  • 7Brooks C A, Iagnemma K, Dubowsky S. Vibration-based ter-rain analysis for mobile robots[C]//IEEE International Confer-ence on Robotics and Automation. Piscataway, NJ, USA: IEEE,2005: 3415-3420.
  • 8Brooks C A, Iagnemma K. Vibration-based terrain classifica-tion for planetary exploration rovers [J]. IEEE Transactions onRobotics, 2005, 21(6). : 1185-1191.
  • 9Sadhukhan D. Autonomous ground vehicle terrain classificationusing internal sensors[D]. Florida, USA: Florida State Univer-sity, 2004.
  • 10DuPont E M, Roberts R G, Selekwa M F,et al. Online ter-rain classification for mobile robots[C]//ASME InternationalMechanical Engineering Congress and Exposition. New York,USA: ASME,2005: 1643-1648.

共引文献594

同被引文献29

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部