期刊文献+

线性混合效应模型的有效稳健经验似然推断 被引量:2

Efficient and Robust Empirical Likelihood Inferences for Linear Mixed Effects Models
下载PDF
导出
摘要 本文考虑线性混合效应模型的有效稳健经验似然统计推断问题.通过结合众数回归方法和矩阵的QR分解技术,提出了一种基于众数回归的正交经验似然统计推断过程.证明提出的关于固定效应的经验对数似然比函数渐近服从中心卡方分布,进而构造了模型固定效应的置信区间.所提出的估计过程不需要对随机效应和模型误差的分布施加任何假定,并且关于固定效应的估计过程不受随机效应的影响,因此具有较好的稳健性和有效性. This paper considers the efficient and robust empirical likelihood inference for linear mixed effects models.By combining modal regression method with QR decomposition technique,a modal regression based orthogonality empirical likelihood inference procedure is proposed.We further show that the proposed empirical log-likelihood ratio is asymptotically chi-squared,and then the confidence intervals for the fixed effects are constructed.The proposed estimation procedure does not need any assumption about the distributions of random effects and model errors,and the resulting estimators for fixed effects are not affected by the random effects.Hence,the proposed method is more robust and efficient.
作者 陈博文 赵培信 唐新蓉 杨宜平 CHEN Bowen;ZHAO Peixin;TANG Xinrong;YANG Yiping(College of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China;Chongqing Key Laboratory of Social Economy and Applied Statistics,Chongqing 400067,China)
出处 《应用数学》 CSCD 北大核心 2020年第4期886-893,共8页 Mathematica Applicata
基金 国家社会科学基金项目(18BTJ035)。
关键词 线性混合效应模型 众数回归 经验似然 QR分解 Linear mixed effects model Modal regression Empirical likelihood QR decomposition
  • 相关文献

参考文献1

二级参考文献15

  • 1Azzalini, A. A note on the estimation of a distribution function and quantiles by kernel method. Bimetrika, 68:326-328 (1981).
  • 2Chen, S.X., Cui, H.J. On the second order properties of empirical likelihood with moment restrictions. J. Econometrics,141: 492-516 (2007).
  • 3Chen, S.X., Hall, P. Smoothed empirical likelihood confidence interval for quantiles. Ann. Statist., 21: 1166-1181 (1993).
  • 4Chen, X.R., Wu, Y.H. Consistency of L1 estimates in censored regression models. Communications in Statistics Theory and Methods, 23:1847-1858 (1993).
  • 5Cui, H.J., Ng, Kai W., Zhu, L.X. Estimation in mixed effects model with errors in variables. J. Multivariate Anal., 91:53-73 (2004).
  • 6Cui, H.J., Chen, S.X. Empirical likelihood confidence region for parameter in the error-in-variables models. J. Multivariate Anal., 84:101-115 (2003).
  • 7Cui, H.J., Kong, E.F. Empirical likelihood confidence regions for semi-parametric errors-in-variables models. Scan. J. of Statist., 33:153-168 (2006).
  • 8DiCicco, T., Hall, P., Romano, J. Empirical likelihood is Barterlett-correctable. Ann. of Statist., 19: 1053-1061 (1991).
  • 9Liang, H., Hardle, W., Carroll, R.J. Estimation in a semiparametric partialy linear error-in-variables model. Ann. of Statist., 27:1519-1535 (1999).
  • 10Liang, H. Asymptotic normality of parametric part in partially linear models with measurement error in the nonpararnetric part. J. Statist. Planning and Inference, 86:51-62 (2000).

共引文献4

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部