摘要
针对临近空间跳跃滑翔目标运动建模困难,跟踪精度低的问题,提出了一种基于自适应衰减震荡模型的轨迹跟踪方法。首先,对临近空间滑翔跳跃目标的运动特点进行了深入分析,确定其运动具有周期性和衰减性的特点;根据这一特点,利用二阶时间自相关随机过程对加速度和飞行路径角进行建模,通过傅里叶变换推导了零均值衰减震荡模型;考虑到临空目标受气动阻力的作用,加速度小于零的情况,借鉴“当前”统计模型的思想,进一步对零均值衰减震荡模型进行改进,提出了自适应衰减震荡模型,实现了目标运动描述在周期性和衰减性上的统一。在此基础上,建立了地理坐标系下的目标运动模型,给出了基于雷达的测量模型。针对该系统非线性较强的特点,利用无迹卡尔曼滤波算法完成了跟踪滤波器的设计。仿真结果表明,所提出的算法具有更好的跟踪效果,其位置跟踪精度和速度跟踪精度较正弦波模型分别提高了17.91%和26.33%。
To solve the problem of difficult motion modeling and low tracking accuracy of the near space hypersonic slippage leap vehicle(NSHV),a trajectory tracking method based on the adaptive damped oscillation model(ADO)is proposed.First of all,the motion characteristic of NSHV is deeply analyzed to determine its periodicity and attenuation characteristics.According to this,the acceleration and the flight path angle are modeled by the second-order time autocorrelation stochastic process,and then the zero-mean damped oscillation model is derived by the Fourier transform.Considering the acceleration of NSHV is less than zero due to aerodynamic drag,based on the“current”statistic model and the zero-mean damped oscillation model,the ADO model is further proposed to achieves the unity of target motion description on periodicity and attenuation.Based on the ADO model,the motion model is established in the geographic coordinate system and the measurement model of the ground based on radar is given.Finally,aiming at the strong nonlinear characteristics of the system,the tracking filter is designed based on the unscented Kalman filter.The simulation results indicate the proposed method is superior to other methods.Compared with the sine wave model,the position tracking accuracy and velocity tracking accuracy of the proposed method have improved 17.91%and 26.33%,respectively.
作者
秦武韬
陆小科
邢晓勇
QIN Wutao;LU Xiaoke;XING Xiaoyong(Nanjing Research Institute of Electronics Technology,Nanjing 210039,China)
出处
《中国惯性技术学报》
EI
CSCD
北大核心
2020年第3期408-414,共7页
Journal of Chinese Inertial Technology
基金
国家自然科学基金(61304236)。
关键词
临近空间飞行器
运动建模
目标跟踪
非线性滤波
near space hypersonic vehicle
motion modeling
target tracking
nonlinear filter