摘要
为了监控用户端数据负荷水平,按照电子政务信息提取框架的处置需求,设计了用户行为管理模块数据挖掘驱动单元的连接,完成用户行为特征提取系统的硬件环境搭建。采用关联电子政务用户行为特征树,存储各类待挖掘的电子政府系统访问数据,完成系统软件设计。实验结果表明,与基于k-means的提取系统相比,应用提出的特征提取系统后,电子政务用户端的数据负荷水平明显下降,用户端主体的数据负荷压力得到良好的监控,从而提供了公众对电子政务系统的满意度。
In order to monitor the data load level of users,according to the disposal requirements of e-government information ex traction framework,the connection of data mining driver unit of user behavior management module is designed to complete the hard ware environment construction of user behavior feature extraction system.By using the behavior characteristic tree of the associated egovernment users,the access data of various e-government systems to be mined are stored,and the system software design is complet ed.The experimental results show that,compared with the K-means based extraction system,the data load level of e-government users is significantly reduced after the application of the proposed feature extraction system,and the data load pressure of users is well moni tored,thus providing public satisfaction with the e-government system.
作者
张华
ZHANG Hua(Shannxi Academy of Governance,Shannxi Province Party School of CPC,Xi'an,Shannxi 710068,China)
出处
《计算技术与自动化》
2020年第3期125-129,152,共6页
Computing Technology and Automation