期刊文献+

改进的PBAS算法在抛物识别中的应用研究 被引量:1

Application of Improved PBAS Algorithm in Throwing Recognition
下载PDF
导出
摘要 为了提高在监控视频下进行抛物识别的快速性及准确性,消除ghost区域存在的干扰以及PBAS算法存在的动态背景效果差的问题,提出了一种改进的PBAS算法。介绍了背景减除法与PBAS算法的理论基础,然后提出了一种改进的PBAS算法,并应用于抛物识别中,最后分别在纯净背景和复杂背景下进行抛物识别对比实验。实验证明文中改进的PBAS算法能够完全去除ghost带来的影响,该算法具有更高的检测率和准确率,实现了更好的抛物识别效果,有效提高了识别的平均处理速度,可以在监控视频中更精准、实时地呈现抛物现场的视频数据等信息,更好地满足在抛物识别中的实际应用。 In order to improve the speed and accuracy of throwing recognition in surveillance video,eliminate the interference in ghost region and the poor dynamic background effect of PBAS algorithm,this paper studies and proposes an improved PBAS algorithm.Firstly,the theoretical basis of background subtraction and PBAS algorithm is briefly introduced.Secondly,an improved PBAS algo rithm is proposed by combining the two algorithms.The algorithm is applied to throwing recognition.Finally,the throwing recognition experiments are carried out under two different backgrounds.Experiments show that the improved PBAS algorithm can completely re move the impact of ghost.And the algorithm has higher detection rate and accuracy,and achieves better throwing recognition effect.It effectively improves the average processing speed of recognition,and presents more accurate and real-time information such as throw ing field video data in surveillance video,so as to better meet the practical application in throwing recognition.
作者 唐德谦 宋刚伟 张进 李钧 周风娥 张继康 TANG De-qian;SONG Gang-wei;ZHANG Jin;LIN Jun;ZHOU Feng-e;ZHANG Ji-kang(State Grid Shaanxi Ankang Hydropower Station,Ankang,Shaanxi 725000,China)
出处 《计算技术与自动化》 2020年第3期161-165,共5页 Computing Technology and Automation
基金 国网陕西省电力公司科技计划资助项目(5226AS180009)。
关键词 PBAS算法 背景减除法 抛物识别 鬼影消除 PBAS algorithm background subtraction throwing recognition ghost removal
  • 相关文献

参考文献6

二级参考文献56

  • 1卓宁,孙华燕,张海江.红外图像中弱小目标检测算法概述[J].光学仪器,2005,27(4):83-86. 被引量:9
  • 2戴苏榕,徐晓辉,王瑾.地空“数据链”传输内容的研究[J].现代电子技术,2005,28(21):28-29. 被引量:9
  • 3鲁居强,王新增,刘顺生,张占全.基于八邻域判决的红外运动小目标检测方法[J].红外,2006,27(9):20-23. 被引量:2
  • 4Zhang Chaoyang,Pan Baochang,Zheng Shenglin,et al. Motion object detection of video based on principal component analysis [C] // Proceedings of the Seventh International Conference on Machine Learning and Cybernetics. Kunming, China, 2008 : 2938-2943.
  • 5Haritaoglu I,Harwood D,Davis L S. W4:Real-time surveillance of people and their activities[J]. IEEE Trans Pattern Analysis and Machine Intelligence ,2000,22 (8) : 809-830.
  • 6Duarte Duque,Henrique Santos,Paulo Cortez. Prediction of abnormal behaviors for intelligent video surveillance systems [ C]// Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining. Honolulu, USA, 2007 : 362-367.
  • 7Huang Yu,Joan Llach,Zhang Chao. A method of small object detection and tracking based on particle filters [C]//International Conference on Pattern Recogni- tion. Tampa,USA,2008 : 1-4.
  • 8Yoshinori Ohno,Jun Miura,Yoshiaki Shirai. Tracking players and estimation of the 3D position of a ball in soccer games [C]// International Conference on Pattern Recognition. Barcelona, Spain, 2000:1145-1149.
  • 9Shai Avidan. Ensemble tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2007, 29 (2) :261-271.
  • 10Buzzi S,Lops M, Venturino L. Track-before-detect procedures for early detection of moving target from airborne radars [J]. 1EEE Transactions on Aerospace and Electronic Systems,2005, 41 (3) :937-954.

共引文献97

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部