期刊文献+

改进Hoeffding不等式的概念漂移检测方法 被引量:5

Improved Detection Method of Concept Drift Based on the Hoeffding Inequality
下载PDF
导出
摘要 针对大多数概念漂移检测算法都存在高延迟和对噪声过于敏感的问题,提出了一种基于四分位距交叠滑动窗口的概念漂移检测方法,该方法使用四分位距窗口中的样本和改进的Hoeffding不等式进行概念漂移检测。为更好地避免噪声对分类器性能的影响,算法在Hoeffding不等式中引入了一个基于当前样本分类正确率的动态系数。实验结果表明,改进后的方法可以有效提高概念漂移检测的准确率,减少漂移检测延迟。 In view of the problem that most of the concept drift detection algorithms have high latency and are too sensitive to noise, a concept drift detection method based on the quartile interval overlapping sliding window is proposed, which uses the samples in the quartile window and the improved Hoeffding inequality to detect the concept drift. In order to avoid the influence of noise on the classifier performance, a dynamic coefficient based on the current sample classification accuracy is introduced into the Hoeffding inequality. Experimental results show that the improved method can effectively improve concept drift detection accuracy and reduce drift detection delay.
作者 徐清妍 何丽 朱泓西 XU Qingyan;HE Li;ZHU Hongxi(School of Science and Technology,Tianjin University of Finance and Economics,Tianjin 300222,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第19期55-61,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.1170011574,No.61502331) 天津市自然科学基金(No.16JCYBJC42000,No.18JCYBJC85100) 天津市教委科研计划项目(No.2017KJ237)。
关键词 四分位距 Hoeffding不等式 数据流分类 概念漂移 interquartile range Hoeffding inequality data stream classification concept drift
  • 相关文献

参考文献4

二级参考文献19

  • 1韩家炜.数据挖掘概念与技术[M].北京:机械工业出版社,2012.
  • 2Manku G S, Motwani R.Approximate frequency counts over data streams[C]//Proceeding of the 28th International Conference on VLDB,Hong Kong,2002.
  • 3Giannella C, Han J, Pei J.Mining frequent patterns in data streams at multiple time granularities[C]//Proceeding of the NSF Workshop on Next Generation Data Mining, 2002: 191-212.
  • 4Cheng J, Ke Y, Ng W.Maintaining frequent itemsets over high-speed data streams[C]//Proceeding of the 10th PAKDD, 2006.
  • 5Lee Daesu, Lee Wonsuk.Finding maximal frequent itemsets over online data streams adaptively[C]//Proc of Fifth IEEE International Conference on Data Mining.Washington DC : IEEE Computer Society, 2005: 266-273.
  • 6Mao Guojun, Wu Xindong, Zhu Xingquan.Mining maximal frequent itemsets from data streams[J].Joumal of Infor- mation Science, 2007,33 ( 3 ) : 251-262.
  • 7Li Hua-Fu,Lee Suh-Yin, Shan Man-Kwan.Online mining (recently)maximal frequent itemset over data streams[C]// Proc of the 15th International Workshops on Research Issues in Data Engineering: Stream Data Mining and Application, 2005 : 11-18.
  • 8Li Hua-Fu, Ho Chin-Chuan, Kuo Fang-Fei.A new algo- rithm for maintaining closed frequent itemsets in data streams by incremental updates[J].Expert Systems with Applications, 2009,36(2) : 2451-2458.
  • 9敖富江,颜跃进,刘宝宏,黄柯棣.在线挖掘数据流滑动窗口中最大频繁项集[J].系统仿真学报,2009,21(4):1134-1139. 被引量:9
  • 10舒平,王旭辉,黄圣国,刘永建.民用飞机重着陆响应及诊断研究[J].中国制造业信息化(学术版),2009,38(8):68-70. 被引量:3

共引文献31

同被引文献22

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部