摘要
为了揭示微表情类别与面部各区域之间的关联度,提出一种局部区域划分和分析方法。该方法首先根据各类微表情对应动作单元所在的位置确定出人脸中最为关键的7个局部区域,然后采用面部形变鉴别模型自动检测出面部49个关键点坐标,再根据这些点确定上述局部区域的4个边界。最后,分别提取各区域的时空模式特征并进行微表情分类,通过各区域对各类微表情的分类准确率来分析两者之间的关联度。实验结果表明,局部区域划分方案科学合理,微表情"惊奇"及"厌恶"与眼睛区域、微表情"高兴"与嘴巴区域、微表情"压抑"与下巴区域有较高的关联度。
In order to reveal the correlation between the micro-expression categories and the local regions, the method for partitioning and analyzing local region is proposed. Firstly, based on the location of action units related to various microexpressions, seven crucial local regions of face are determined. Then, 49 facial point coordinates are detected automatically through facial deformation identification model and the four boundaries of the aforementioned local regions are established according to these coordinates. The spatio-temporal pattern features of each region are extracted and the microexpressions are classified. Finally, the correlation between the micro-expression categories and the local regions are obtained by the recognition accuracy of each region for every micro-expression category. The experimental results show that the proposed scheme for partitioning local region is precise and reasonable;there is a highly correlation between the eye area and surprise or disgust. The similar correlations also lie in the mouth area and the happiness, the chin area and the depression.
作者
张延良
卢冰
蒋涵笑
洪晓鹏
赵国英
张伟涛
ZHANG Yanliang;LU Bing;JIANG Hanxiao;HONG Xiaopeng;ZHAO Guoying;ZHANG Weitao(School of Physics and Electronic Information,Henan Polytechnic University,Jiaozuo,Henan 454000,China;School of Electronic and Information Engineering,Xi’an Jiao Tong University,Xi’an 710049,China;Center for Machine Vision and Signal Analysis,University of Oulu,Oulu FI-90014,Finland;School of Electronic Engineering,Xidian University,Xi’an 710071,China)
出处
《计算机工程与应用》
CSCD
北大核心
2020年第19期146-151,共6页
Computer Engineering and Applications
基金
国家自然科学基金(No.61571339)
网络与交换技术国家重点实验室开放课题(No.SKLNST-2016-1-02)
河南理工大学博士基金(No.B2017-55)。
关键词
微表情识别
局部区域
动作单元
面部形变鉴别模型
分类准确率
micro-expression recognition
local region
action units
facial deformation identification model
recognition accuracy