摘要
为了提高一类稳态Poisson-Nernst-Planck方程有限元解的精度,引入L^2投影算子,给出了一致网格和非一致网格下的超收敛误差估计。数值结果表明,引入L^2投影算子可以使有限元解的梯度达到超收敛效果。
In order to improve the accuracy of the finite element solution of a class of steady-state Poisson-Nernst-Planck equations,the L^2 projection operator is introduced.The superconvergence error estimates for uniform and non-uniform grids are given.The numerical results show that the introduction of the L^2 projection operator can make the gradient of the finite element solution reach the super-convergence effect.
作者
覃柳术
阳莺
唐鸣
QIN Liushu;YANG Ying;TANG Ming(School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China;Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,Guilin 541004,China)
出处
《桂林电子科技大学学报》
2020年第3期240-243,共4页
Journal of Guilin University of Electronic Technology
基金
国家自然科学基金(11561016,11661027,11661024)
广西高校数据分析与计算重点实验室开放基金(LD16070X)
桂林电子科技大学研究生教育创新计划(2017YJCX83)。