期刊文献+

一类稳态Poisson-Nernst-Planck方程的L^2投影的超收敛

Superconvergence of L^2 projection for a class of steady-state Poisson-Nernst-Planck equations
下载PDF
导出
摘要 为了提高一类稳态Poisson-Nernst-Planck方程有限元解的精度,引入L^2投影算子,给出了一致网格和非一致网格下的超收敛误差估计。数值结果表明,引入L^2投影算子可以使有限元解的梯度达到超收敛效果。 In order to improve the accuracy of the finite element solution of a class of steady-state Poisson-Nernst-Planck equations,the L^2 projection operator is introduced.The superconvergence error estimates for uniform and non-uniform grids are given.The numerical results show that the introduction of the L^2 projection operator can make the gradient of the finite element solution reach the super-convergence effect.
作者 覃柳术 阳莺 唐鸣 QIN Liushu;YANG Ying;TANG Ming(School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China;Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2020年第3期240-243,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11561016,11661027,11661024) 广西高校数据分析与计算重点实验室开放基金(LD16070X) 桂林电子科技大学研究生教育创新计划(2017YJCX83)。
关键词 Poisson-Nernst-Planck方程 L^2投影 超收敛 Poisson-Nernst-Planck equations L 2 projection superconvergence
  • 相关文献

参考文献2

二级参考文献9

  • 1陈传淼.两点边值问题Galerkin法的逼近佳点[J].高校计算数学学报,1979,1:73-79.
  • 2Heimsund B O, Tai X C, Wang Junping. Superconvergence for the gradient of finite element approximations by L2 projections [J]. SIAM J Numer Anal, 2002,40 (4) : 1263-1280 (electronic).
  • 3Lin Qun, Lin Jiafu. Finite element methods: Accuracy and improvement[M].北京:科学出版社.2006.
  • 4Ciarlet P G, Raviart P A. Interpolation theory over curved elements with approxiamtions to finite element methods [J]. Comput Methods Appl Mech Engrg, 1972, 1:217-249.
  • 5Falk R S, Arnold D N, Boffi D. Approximation by quadrilateral finite elements [J]. Math Comp, 2002,71:909-922.
  • 6Falk R S, Arnold D N, Boffi D. Quadrilateral H (div) finite elements [J]. SIAM J Numer Anal, 2005,42 (6) : 2429-2451.
  • 7Brezzi F, Fortin M. Mixed and hybrid finite element methods[M]. New York: Springer, 1964.
  • 8Thomas J M. Sur I'analysis numerique des methods d' elements finis hybrides et mixtes [J]. Methods Appl Engrg, 1999 (4) : 101-110.
  • 9Ye Xiu, Wang Junping. Superconvergence of finite element approxiamation for the stokes problem by projection methods [J]. SIAM J Numer Anal, 2001,39 (3) : 1001-1013.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部