摘要
传统6轴机器人的逆运动学求解需要位置信息和姿态信息,针对物体姿态识别困难和不确定性大的问题,提出了一种根据物体位置信息的6轴机器人姿态求解算法。基于机器人灵活性的概念,建立机器人第5轴的服务球模型,离散化机器人末端位置点,得到服务球面上的一系列离散点。在机器人共形几何的基础上,研究离散点与机器人关节角的映射关系,得出机器人在某一空间位置点的姿态集合。根据机器人奇异性、关节避限和关节连续性的综合准则,从姿态集合中选取一组最佳的机器人姿态。在笛卡尔坐标系下进行不同位置点的插补,通过求解不同插补点的姿态,实现机器人不同位置点间的连续运动。结果表明,根据物体的三维坐标信息,可以完成6轴机器人的逆运动学计算,并且计算速度快、准确性高,简化了物体的姿态识别过程,提高了机器人连续作业的效率。
The inverse kinematics solution of the traditional 6-axis robot requires position information and attitude information.Aiming at the problem of difficulty and uncertainty of object attitude recognition,a 6-axis robot attitude solution algorithm based on object position information is proposed.Based on the concept of robot dexterity,a service ball model for the robot's 5th axis is established,and the end positions of the robot are discretized to obtain a series of discrete points on the service sphere.Based on the conformal geometry of the robot,the mapping relationship between the discrete points and the joint angle of the robot is studied,and the attitude set of the robot at a certain spatial position is obtained.According to the comprehensive criteria of robot singularity,joint avoidance and joint continuity,a set of best robot poses is selected from the pose set.In the Cartesian coordinate system,interpolation of different position points is performed,and the continuous motion between different position points of the robot is realized by solving the pose of different interpolation points.The results show that,according to the three-dimensional coordinate information of the object,the inverse kinematics calculation of the 6-axis robot can be completed and the calculation speed is fast and the accuracy is high,which simplifies the attitude recognition process of the object and improves the efficiency of the robot's continuous operation.
作者
王见
敖宇
Wang Jian;Ao Yu(State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing 400044,China;College of Mechanical Engineering,Chongqing University,Chongqing 400044,China)
出处
《机械传动》
北大核心
2020年第10期96-103,共8页
Journal of Mechanical Transmission
基金
重庆市科技重大主题专项(cstc2018jszx-cyztzx X0026)。
关键词
逆运动学
灵活性
共形几何
姿态
Inverse kinematics
Dexterity
Conformal geometry
Attitude