期刊文献+

一种连续无创血压预测的改进向量机学习方法 被引量:6

A Continuous Non-invasive Blood Pressure Prediction Method Based on Improved SVR Learning
下载PDF
导出
摘要 因不同人体生理特征的差异性,影响了基于光电容积脉搏波(PPG)和心电信号(ECG)的连续无创血压测量精度,提出一种基于优化的支持向量机模型预测血压的方法。该方法将PPG、ECG及人体特征进行处理并组成特征矩阵,通过水银血压计测得实时血压值,运用主成分分析法和遗传算法改进的支持向量机学习模型对特征矩阵和实时血压值进行回归训练,从而建立最优血压预测模型。实验证明,优化改进支持向量回归血压预测方法比传统支持向量机学习法准确度提升了10%~15%。 Aiming at the accuracy of continuous non-invasmive monitoring of blood pressure by photoelectric method based on the photoplethysmography(PPG) signal and the electrocardiography(ECG) signal, is influenced by the differences of human characteristics, a blood pressure prediction method based on principal component analysis(PCA) and genetic algorithm(GA) to optimize machine learning model is proposed. The method processes the PPG signal, ECG signal and human body features to form a feature matrix, and uses an improved SVR learning model to perform regression training on the feature matrix and the real-time blood pressure value measured by the mercury sphygmomanometer. The GA is used to optimize the parameters to establish an optimal blood pressure prediction model. The experimental results show that, compared with the traditional SVR, the proposed method could improve the predictive accuracy by 10%–15%.
作者 樊海霞 陈小惠 Fan Haixia;Chen Xiaohui(College of Electrical Engineering,Nanjing institute of industry technology,Nanjing 210023,China;College of Automation/Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2020年第9期1686-1692,共7页 Journal of System Simulation
基金 国家自然科学基金(61801239)。
关键词 支持向量回归模型 遗传算法 人体特征 血压预测 Support vector regression model(SVR) Genetic algorithm(GA) Human body characteristics Blood pressure prediction
  • 相关文献

参考文献5

二级参考文献23

共引文献29

同被引文献49

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部