期刊文献+

基于功率谱密度频谱分析的小鼠睡眠分期方法的研究 被引量:1

A Study of Sleep Stage for Mice Based on Power Spectral Density Spectrum Analysis
下载PDF
导出
摘要 目的:建立一种基于功率谱密度频谱分析的小鼠睡眠分期方法。方法:通过慢性埋置电极,利用在体多通道电生理记录系统同时采集小鼠大脑皮层脑电和颈部肌电的电生理信号,利用数据分析软件对原始电生理信号进行降噪处理和建立功率谱密度频谱图,然后结合小鼠睡眠的生理特点和行为视频,从功率谱密度频谱图上判别小鼠各睡眠期的时间间隔。结果:与人工目测分析电信号波形的睡眠分期结果相比,基于功率谱密度频谱分析的小鼠睡眠分期结果的符合率达91%以上。分析小鼠连续3d相同时间段的睡眠时间,发现变化较小。结论:本研究所建立的小鼠睡眠分期方法具有可信、稳定和简单的优点,运用该方法可评估小鼠的睡眠质量,为睡眠疾病诊断提供理论依据。 Objective:To establish a sleep staging method for mice based on power spectral density spectrum analysis of electrophysiological signals.Methods:Eelectroencephalogram(EEG)and electromyogram(EMG)in freely moving mice were obtained by a multichannel neuroelectric signal recording system.The original electrophysiological signals were de noised and the power spectral density spectrum was established by data analysis software.Then,combined with the physiological characteristics and behavior video of mice sleep,the time interval of each sleep staging of mice was directly identified from the power spectral density spectrum.Results:Compared with the results of artificial visual analysis,the coincidence rate of sleep staging results based on power spectral density spectrum analysis of electrophysiological signals was more than 91%.The sleep time of mice in the same period for 3 consecutive days showed little change.Conclusion:The method established in this paper has the advantages of reliability,stability and simplicity.It can be used to evaluate the sleep quality of mice and provide theoretical basis for the diagnosis of sleep diseases.
作者 薛奋勤 李华 刘丽娜 许晴 薛冰 魏华 XUE Fen-qin;LI Hua;LIU Li-na;XU Qing;XUE Bing;WEI Hua(Core Facility Center,Capital Medical University,Beijing 100069)
出处 《中国医疗器械信息》 2020年第17期34-36,共3页 China Medical Device Information
基金 首都医科大学校长基金(课题名称:在体光遗传学和多通道电生理记录结合在动物大脑皮层神经电信号研究中的应用,项目编号:2016JS08)。
关键词 脑电 肌电 功率谱密度频谱图 睡眠分期 EEG EMG power spectral density spectrum sleep stage
  • 相关文献

参考文献4

二级参考文献29

共引文献26

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部