期刊文献+

Bacterial succession in epiphytic biofilms and deciduous layer sediments during Hydrilla verticillata decay: A field investigation 被引量:4

原文传递
导出
摘要 Submersed macrophytes decay is an important natural process and has important role in mass and energy flow in aquatic ecosystems.However,little is known about the dynamical changes in nutrients release and bacterial community during submersed macrophyte decay in natural environment.In this study,a field observation was conducted in a wetland dominated with Hydrilla verticillata for 36 days.Increase of H2O2 and malondialdehyde(MDA)content and decrease of soluble proteins concentration were detected in leaves during H.verticillata decay.Meanwhile,ammonium-N,soluble microbial products(SMP)and TOC concentration increased in overlying water.According to bacterial 16 S r RNA Illumina sequencing analysis,the Shannon values were lower in epiphytic biofilms than deciduous layer sediments.The relative abundances of Proteobacteria,Cyanobacteria and Actinobacteria were higher in epiphytic biofilms than in deciduous layer sediments(P<0.05).Co-occurrence network analyses showed that a total of 578 and 845 pairs of correlations(|r|>0.6)were identified from 122 and 112 genera in epiphytic biofilms and deciduous layer sediments,respectively.According to co-occurrence patterns,eight hubs were mainly from phyla Proteobacteria,Acidobacteria and Parcubacteria in epiphytic biofilms;while 37 hubs from the 14 phyla(Proteobacteria,Bacteroidetes,Acidobacteria,Chloroflexi,et al.)were detected in deciduous layer sediments.Our results indicate that bacterial community in deciduous layer sediments was more susceptible than in epiphytic biofilms during decay process.These data highlight the role of microbial community in deciduous layer sediments on nutrients removal during H.verticillata decay and will provide useful information for wetland management.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第7期193-201,共9页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.E51879084 and E51579075) Major Science and Technology Program for Water Pollution Con-trol and Treatment of China(No.2018ZX07208-4)。
  • 相关文献

参考文献3

二级参考文献74

共引文献77

同被引文献45

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部