期刊文献+

逐步增加Ⅱ型截尾下复合瑞利分布参数的Bayes估计 被引量:2

BAYES ESTIMATION OF COMPOUND RALEIGH DISTRIBUTION PARAMETERS UNDER TYPEⅡTRUNCATION
下载PDF
导出
摘要 在逐步增加Ⅱ型截尾样本下,给出了复合瑞利分布尺度参数的极大似然估计.在取先验分布为无先验信息、共轭先验分布、指数分布时,考虑平方损失函数与对称熵损失函数估计的准确性,得到了参数的Bayes估计的表达式.通过随机模拟试验数据对比发现,从有无先验信息的角度看,尺度参数θ的Bayes估计在无先验信息下的估计要更加接近真值,故无先验信息下的估计值比有先验信息的估计值更准确.在不同的损失函数下,对称熵损失函数下的估计值均方误差较小,故在对称熵损失函数下尺度参数θ的估计是最优的. With the increasing of typeⅡcensored samples,the maximum likelihood estimation of the scale parameters of the composite Rayleigh distribution is given.When the prior distribution is taken as no prior information,conjugate prior distribution and exponential distribution,the accuracy of the estimation of the square loss function and symmetric entropy loss function is considered,and the expression of the Bayes estimation of the parameters is obtained.From the point of view of whether there is prior information or not,the Bayes estimation of scale parameters is closer to the true value without prior information,so the estimation value without prior information is more accurate than that with prior information.Under different loss functions,the mean square error of the estimation value under symmetric entropy loss function is smaller,so the estimation of scale parameters under symmetric entropy loss function is optimal.
作者 邵媛媛 周菊玲 董翠玲 Shao Yuanyuan;Zhou Juling;Dong Cuiling(School of Mathematical Science,Xinjiang Normal University,830017,Urumqi,China)
出处 《山东师范大学学报(自然科学版)》 CAS 2020年第3期318-323,共6页 Journal of Shandong Normal University(Natural Science)
基金 国家自然科学基金资助项目(11801488) 新疆维吾尔自治区自然科学基金面上资助项目(2018D01A27) 新疆师范大学重点实验室资助项目(XJNUSYS082018A01) 新疆师范大学“十三五”校级重点学科数学招标课题资助项目(17SDKD1101) 新疆师范大学硕士研究生科研创新资助项目(XSY201902001).
关键词 复合瑞利分布 逐步增加Ⅱ型截尾样本 BAYES估计 R软件 compound rayleigh distribution gradual increase of typeⅡtruncated samples Bayes estimation R software simulation
  • 相关文献

参考文献14

二级参考文献99

  • 1王炳兴.一个两参数有浴盆形状失效率的寿命分布的参数估计[J].高校应用数学学报(A辑),2008,23(4):408-414. 被引量:7
  • 2王炳兴.Weibull分布基于定数逐次截尾寿命数据的统计分析[J].科技通报,2004,20(6):488-490. 被引量:12
  • 3汤银才.CE模型下Weibull分布序加试验的Bayes分析[J].系统科学与数学,2006,26(3):342-351. 被引量:12
  • 4Soliman A A. Estimation of parameter of life from progressively cen-sored data using Burr-XII model. IEEE Transcations on reliability, 2005 ;54:34-42.
  • 5Pareek B, Kundu D. On progressively censored competing risks data for Weibull distributions. Computational Statistics and Data Analysis, 2009 ; 53:4083-4094.
  • 6Basak P, Basak I. Estimation for the three - parameter lognormal dis- tribution based on progressively censored data. Computational Statis- tics and Data Analysis, 2009 ; 53:3580-3592.
  • 7Del Castillo J, Daoudi J. Estimation of the generalized Pareto distri- bution. Statistics and Probability Letters, 2009; 79:684-688.
  • 8Lu Hailin, Tao Shinhwa. The estimation of pareto distribution by a weighted least square method. Quality & Quantity, 2007; 41: 913 -926.
  • 9Balakrishnan N, Aggarwala R. Progressive censoring: theory, meth- ods and applications. Birkhauser, Boston, 2000.
  • 10张彩平.三参数分布的估计和检验问题.上海:华东师范大学,2006.

共引文献56

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部