期刊文献+

航天器内超宽带无线信道模型研究

A study of model for Ultra-Wideband Wireless Channel in Spacecraft
下载PDF
导出
摘要 超宽带无线技术取代有线通信有助于降低航天器的重量与发射成本。相比传统窄带通信,超宽带无线通信具有抗干扰能力强的优势,是航天器轻小型化的重要技术储备。针对航天器内无线通信的信道特点,采用射线追踪与一致性几何绕射理论相结合的方法,探究了航天器内部结构对于信道特性的影响。仿真结果表明,内部空间的增加导致更宽的时延扩展;非视距传播相对于视距传播会导致更严重的路径损耗与时延扩展。同时,通过搭建超宽带通信实验系统并在航天器模型内部进行测试,验证了在航天器内部进行超宽带无线通信的可行性与可靠性。 Ultra-wideband wireless technology can help reduce the weight and launch costs of spacecraft by repla⁃cing wired communications.Compared with traditional narrow-band communication,UWB wireless communication has the advantage of strong anti-interference ability and is an important technical reserve for spacecraft lightweight miniaturization.Aiming at the channel characteristics of wireless communication in spacecraft,this paper uses the combination of ray tracing and uniform geometrical theory of diffraction to explore the influence of the internal struc⁃ture of the spacecraft on the channel characteristics.The simulation results show that the increase of internal space leads to higher delay spread,and non-line-of-sight propagation leads to more path loss and higher delay spread than line-of-sight propagation.At the same time,the UWB communication experiment system is built and tested,which verifies the feasibility and reliability of UWB wireless communication in the spacecraft.
作者 朱会成 谢义方 ZHU Hui-cheng;XIE Yi-fang(National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机仿真》 北大核心 2020年第9期55-59,249,共6页 Computer Simulation
基金 中国科学院科技创新基金项目(CXJJ-17S021)。
关键词 航天器 超宽带 信道模型 射线追踪法 Spacecraft Ultra-wideband Channel model Ray tracing method
  • 相关文献

参考文献3

二级参考文献36

  • 1李超峰,焦培南.三维射线跟踪预测模型在5.8GHz的实验验证[J].电波科学学报,2006,21(6):921-924. 被引量:6
  • 2Istepanian R, Jovanov E, Zhang Y. Guest editorial introduction to the special section on m-health:Beyond seamless mobility and global wireless health-care connectivity [J]. IEEE Transactions on Information Technology in Biomedicine, 2004, 8(4): 405- 414.
  • 3Raskovie D, Martin T, Jovanov E. Medical monitoring applications for wearable computing [J]. The Computer Journal, 2004, 47(4) : 495 - 504.
  • 4Ho C K, Yuce M R. Low data rate ultra wideband ECG monitoring system [C]// Proc IEEE IEMS. CaIlaghan, Australia: IEEE Press, 2008:3413-3416.
  • 5Mehmet R Y, Ho C K, Moo S C. Wideband communication for implantable and wearable systems [J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(10) : 2597 - 2604.
  • 6Chavez-Santiago R, Khaleghi A, Balasingham I, et al. Architecture of an ultra wideband wireless body area network for medical applications [C]// Proc IEEE ISABEL. Bratislava, Slovak: IEEE Press, 2009:24- 27.
  • 7Haykin S, Moher M. Modern Wireless Communications [M]. Upper Saddle River, NJ, USA: Prentice Hall, 2006.
  • 8Saleh A A M, Valenzuela R. A statistical model for indoor multipath propagation [J]. IEEE Journal on Selected Areas in Communications, 1987, 5(2) : 128- 137.
  • 9Takada J, Aoyagi T, Takizawa K, et al. Static propagation and channel models in body area [C]// COST 2100 TD(08)639. Lille, France, 2008: 6-8.
  • 10Kannan B. Characterization of UWB Channels: Small-Scale Parameters for Indoor and Outdoor Office Environment [S]. IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs). IEEE802. ]5-04 0385 00 04a. 2004.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部