摘要
为了进一步优化区域经济能源消耗结构,采用神经网络对区域能源消费总量进行预测,再根据预测结果及仿生算法来进行结构优化。首先,结合2002—2016年度的能源消耗及GDP等相关数据,建立神经网络预测模型,预测了后续年度的区域能源消耗总量;其次,结合年鉴数据及国家能源消耗相关政策,进行仿生算法的能源消耗结构优化,确定能源消耗比例;最后,以京津冀地区为例进行实例仿真,结果表明,预测精度较高且能有效地为能源结构方案的制定提供数据支持。
In order to further optimize the energy consumption structure of regional economy,a neural network is used to predict the total regional energy consumption,and the structure is optimized according to the prediction results and the bionic algorithm.Firstly,combining with the relevant data of energy consumption and GDP from 2002 to 2016,a neural network prediction model is established to predict the total regional energy consumption in subsequent years.Secondly,combining with the yearbook data and related policies of national energy consumption,the bionic algorithm-based energy consumption structure optimization is carried out to determine the energy consumption ratio.Finally,the simulation experiment is made by taking Beijing-Tianjin-Hebei region as a case study,and the results show that the prediction accuracy is high and it can effectively provide data support for energy structure plan formulation.
作者
吴睿辉
任艳
WU Ruihui;REN Yan(School of Economics and Management,Guangzhou Nanyang Polytechnic College,Guangzhou 510900,China;Information Management Institute,Xinjiang University of Finance and Economics,Urumqi 830012,China)
出处
《长春大学学报》
2020年第9期36-40,共5页
Journal of Changchun University
基金
新疆维吾尔自治区高校科研计划项目(XJEDU2019Y036)
新疆维吾尔自治区社会科学基金项目(19BXW085)。
关键词
能源消耗总量
能源消耗结构
神经网络
仿生算法
人工鱼群
total energy consumption
energy consumption structure
neural network
bionic algorithm
artificial fish swarm