摘要
针对目前同步测试场景中人力及时间成本高、测试现场受限、数据语义复杂及测试风险难以控制的痛点问题,基于人工智能技术,提出了一种同步测试巡检技术方案。该方案首先实现了同步测试模式分类及异常检测算法,其次依托于云计算+大数据平台,搭建了同步测试巡检系统,最后进行了现场试验验证。结果表明,该技术方案可自动同步测试智能巡检,及时发现测试异常情况,在一定程度上可提升测试效率、降低测试风险。
Aiming at the pain points of high labor and time costs,limited testing sites,complex data semantics,and difficultity on control of test risks in current testing scenarios of synchronization,this paper proposes a test inspection technical solution based on artificial intelligence technology for synchronizaiton.In this scheme,firstly the synchronization testing pattern classification and anomaly detection algorithm are implemented,secondly,relying on the cloud computing plus big data platform,the synchronization test inspection system is developed,and finally the related experiment verification is carried out.The experimental results show that the technical solution can automatically perform synchronization test intelligent inspections,discovering test abnormalities in time,improving test efficiency and reducing test risks to a certain extent.
作者
潘峰
吕博
PAN Feng;LYU Bo(Technolog and Standards Research Institute,China Academy of Information and Communication Technology,Beijing 100191,China)
出处
《信息通信技术与政策》
2020年第9期55-62,共8页
Information and Communications Technology and Policy
基金
国家自然科学基金面上项目(No.61671159)资助。
关键词
人工智能
时钟同步
测试巡检
大数据
云计算
artificial intelligence
synchronization
testing inspection
big data
cloud computing