期刊文献+

基于长短期记忆神经网络方法的车辆跟驰模型 被引量:15

Vehicle following model based on long short-term memory neural network
原文传递
导出
摘要 为模拟驾驶员的跟驰驾驶行为,并考虑驾驶员不确定性和记忆效应,基于实车跟驰实验数据,提出并训练了一种基于长短期记忆(LSTM)神经网络方法的车辆跟驰模型。基于该模型研究驾驶员的记忆效应影响时长并进行交通仿真。结果表明:与同体积隐藏层神经元的前馈神经网络比较,LSTM神经网络的跟驰模型预测结果更加贴近观测值且更加平滑,接近驾驶员的实际驾驶行为;驾驶员行为受当前环境及其前1.0~3.5 s内的记忆影响;该模型能够消散交通流中的扰动,模型具有较好的抗干扰能力和稳定性。 A vehicle following model based on Long Short Term Memory(LSTM)neural network was proposed in order to simulate car-following behavior considering drivers’ uncertainty and memory effect.The model was trained using the actual car following data. Based on the model,drivers’ memory effect was studied and a traffic simulation was carried out. The results show that compared with the feedforward neural network model with the same number of hidden layer neurons,the prediction results of the LSTM neural network model are more accurate,smoother and closer to drivers’ actual driving behavior. The car-following behavior is affected by the current environment and the memory within previous 1.0~3.5 s. The model can dissipate disturbances in traffic flow,and the model has good anti-interference ability and stability.
作者 孙倩 郭忠印 SUN Qian;GUO Zhong-yin(Key Laboratory of Road and Traffic Engineering,Ministry of Education,Tongji Unitversity,Shanghai 201804,China;Shandong Road Region Safety and Emergency Support Laboratory,Jinan 250100,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第4期1380-1386,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(71673201)。
关键词 交通信息工程及控制 跟驰模型 长短期记忆神经网络 记忆效应 交通仿真 transportation information engineering and control vehicle following model long short-term memory(LSTM)neural network memory effect traffic simulation
  • 相关文献

参考文献4

二级参考文献33

  • 1季红光,王海明,陈尧忠,张麟,潘祥福.一种疲劳自评问卷的信度和效度初探[J].海军医学杂志,1999,17(1):30-32. 被引量:10
  • 2王建强,刘刚,李克强,连小珉.复杂路况下汽车主动避撞报警技术研究[J].公路交通科技,2005,22(4):132-135. 被引量:20
  • 3Brackstone M, McDonald M. Car following: A historical review [J]. Transportation Research Part F, 1999(2): 181 - 196.
  • 4Lee K, Peng H. Identification and verification of a longitudinal human driving model for collision warning and avoidance systems [J]. Int J Vehicle Autonomous Systems, 2004, 2(1/2): 3-17.
  • 5Gazis D C, Herman R, Rothery R W. Nonlinear follow the leader models of traffic flow [J]. Operations Research, 1961(9): 545-567.
  • 6Gipps P G. A behavioral car following model for computer simulation [J]. Transportation Research B, 1981(15): 105 - 111.
  • 7Helly W. Simulation of bottlenecks in single lane traffic flow [C]//Proceedings of the Symposium on Theory of Traffic Flow. Research Laboratories, General Motors, 1959: 207 - 238.
  • 8Kim T, Lovell D J, Park Y. Limitation of previous models on car following behavior and research needs [C]//The 82th Transportation Research Board Annual Meeting. Washington D.C. , 2003: No. 03-3721.
  • 9Panwai S, Dia H, Development and evaluation of a reactive agent-Based car following model [C]//Proeeedings of the Intelligent Vehicles and Road Infrastructure Conference (IVRI'05), 16th and 17th. Melbourne, 2005: ISBN 0-908556-79-9.
  • 10ZHANG L, WANG J Q, LI K Q. An instrumented vehicle test bed and analysis methodology for investigating driver behavior [C]// The 14th ITS World Congress. Beijing, 2007.

共引文献62

同被引文献108

引证文献15

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部