期刊文献+

一类各向异性椭圆问题的比较定理

A Comparison Theorem on A Class of Anisotropic Elliptic Problem
下载PDF
导出
摘要 文中考虑下列问题N-1∑i=1fi(u,x)uxixi+uxNxN+g(u,x)K(|■u|)+P(x)f(u,x)=0,x∈Ω,边界条件为u|əΩ=u|əΩ且在əΩ上≥0,其中:Ω∪R^N是一个有界开区域,N≥2.我们应用极大值原理,给出了此类各向异性椭圆问题的比较定理. In this paper,we consider the problemN-1∑i=1fi(u,x)uxixi+uxNxN+g(u,x)K(|■u|)+P(x)f(u,x)=0,x∈Ω,subject to the boundary condition u|əΩ=u|əΩ,withu≥0 onəΩ,WhereΩ∪R^N is a bounded open domain,N≥2.Using the maximum principle,we will establish comparison theorems on the class of anisotropic elliptic problem.
作者 朱秀丽 Zhu Xiuli(Science College,Northeast Electric Power University,Jilin Jilin 132012)
出处 《东北电力大学学报》 2020年第5期93-96,共4页 Journal of Northeast Electric Power University
关键词 比较定理 各向异性 椭圆方程 极值原理 Comparison theorem Anisotropic Elliptic equation Maximum principle
  • 相关文献

参考文献1

二级参考文献11

  • 1Zhonghai Xu, Jiashang Zheng, Zhengguo Feng. Existence and regularity of nonnegative solution of a singular quasi- linear anisotropic boundary value problem with gradient terms[ J]. Nonlinear Analysis TMA ,2011,74 (3) :739-756.
  • 2A. Nachman and A. Callegari. A nonlinear singlar boundary value problem in the theory of pseudoplastic fluids[ J]. SIAM J. Appl. Math. 1986,38(2) :275-281.
  • 3C A. Stuart. Existence theorems for a class of nonlinear integral equations[ J]. Math. Z. , 1974,137( 1 ) :49-66.
  • 4S. D. Taliaferro. A nonlinear singlar boundary value problem [ J ]. Nonlinear Analysis TMA, 1979,3 (6) :897-904.
  • 5Zhang Zhijun, Jiangang Chen, Existence and optimal estimates of solution for singular nonlinear Dirichlet problems [ J ], Nonlinear Anal 2004,57 ( 3 ) :473-484.
  • 6Lin Changshou;Tso Kaising, On regular solutions of second order degenerate elliptic-parabolic equations [ J ]. Comm. P. D. E. , 1990,15 (9) :1329-1360.
  • 7Y. S. Choi, A. C. Lazer, P. J. McKenna, On a singular quasilinear anisotropic elliptic boundary value problem [ J ]. Trans. A. M. S. , 1995,347 (7) :2633-2641.
  • 8Y. S. Choi, and P. J. McKenna, A singular quasilinear anisotropic elliptic boundary value problem II[ J ]. Trans. A. M. S., 1998,350 (8) : 2925 -2937.
  • 9F. St. Cirstea,and V. D. Radulescu, Existence implies uniqueness for a class of singular anisotropic elliptic boundary-value problems [ J 1. Mathematical Method in the Applied Sciences ,2001,24( 11 ) :771-779.
  • 10徐中海.一类含有梯度项的塑性流体数学模型正解的存在性及正则性[J].厦门大学学报(自然科学版),2013,52(1):1-4. 被引量:2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部