期刊文献+

On a Quasilinear Degenerate Parabolic Equation from Prandtl Boundary Layer Theory

原文传递
导出
摘要 The equation arising from Prandtl boundary layer theory (e)u/(e)t-(e)/(e)x1(a(u,x,t)(e)u/(e)xi)-fi(x)Diu+c(x,t)u=g(x,t)is considered.The existence of the entropy solution can be proved by BV estimate method.The interesting problem is that,since a(·,x,t) may be degenerate on the boundary,the usual boundary value condition may be overdetermined.Accordingly,only dependent on a partial boundary value condition,the stability of solutions can be expected.This expectation is turned to reality by Kru(z)kov's bi-variables method,a reasonable partial boundary value condition matching up with the equation is found first time.Moreover,if axi(·,x,t)|x∈(e)Ω=a(·,x,t)|x∈(e)Ω=0 and fi(x)|x∈(e)Ω=0,the stability can be proved even without any boundary value condition.
作者 OUYANG Miao
出处 《Journal of Partial Differential Equations》 CSCD 2020年第2期119-142,共24页 偏微分方程(英文版)
基金 The paper is supported by Natural Science Foundation of Fujian province(2019J01858) supported by SF of Xiamen University of Technology,China.The author would like to think reviewers for their good comments.
  • 相关文献

参考文献2

二级参考文献15

  • 1[1]Prandtl L.Uber Flussigkeitsbewegungen bei sehr kleiner Reibung.In:Verh Int Math Kongr,Heidelberg,1904.Germany:Teubner,1905.484-494
  • 2[2]Oleinik O A,Samokhin V N.Mathematical Models in Boundary Layer.London:Chapman & Hall/CRC,1999
  • 3[3]Samokhin V N.On the boundary layer system for a pseudo-plastic fluid.Dokl Akad Nauk SSSR,1973,210:1043-1046
  • 4[4]Samokhin V N.On the equations of the MHD boundary layer in dilatable fluids.Diff Uravnenia,1993,29:328-336
  • 5[5]Schlichting H.Boundary Layer Theory,7th ed.New York:McGrawHall,1987
  • 6[6]Weinan E.Blow-up of solutions of the unsteady Prandtl's equations.Comm Pure Appl Math,1997,1:1287-1293
  • 7[7]Oleinik O A.On the mathematics theory of boundary layer for non-stationary incompressible flow.J Appl Mech,1966,30:951-974
  • 8[8]Xin Z,Zhang L.On the global existence of solutions to the Prandtl's system.Adv Math,2004,191:88-133
  • 9[9]Vol'pert A I.BV space and quasilinear equations.Mat sb,1967,73:255-302
  • 10[10]Ladyzenskaja O A,Solonnikov V A,Uralceva N N.Linear and Quasilinear Equations of Parabolic Type.Rhode Island:American Mathematical Society Providence,1968

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部