期刊文献+

基于GRU网络的血糖预测方法研究 被引量:5

BLOOD GLUCOSE PREDICTION METHOD BASED ON GRU
下载PDF
导出
摘要 针对连续血糖监测数据(Continues Glucose Monitoring,CGM)存在强烈的时变性、复杂非线性和非平稳性等问题,提出一种基于门控循环网络(Gated Recurrent Unit,GRU)的血糖预测模型。对原始时间序列数据进行平稳化处理,利用自相关系数确立模型输入序列长度,进而将原始数据序列转化为监督型学习样本。在此基础上构建GRU血糖预测模型,并与基本RNN网络、长短记忆网络、支持向量回归进行对比。结果表明,该方法具有较高预测精度,其预测步长为20步的均方根误差和平均绝对百分误差分别为0.761 2 mmol/L和7.342 7%,可为血糖闭环控制系统提供支持。 In view of the problems of continuous glucose monitoring(CGM),such as strong time-varying,complex nonlinear and non-stationary,this paper proposes a blood glucose prediction model based on GRU.The original time series data were smoothed for stationarity.The autocorrelation coefficient was used to determine the length of input sequence,and then the original data series was transformed into supervised learning samples.On this basis,the GRU blood glucose prediction model was constructed,and compared with the basic RNN,LSTM and SVM.The results show that our method has high prediction accuracy.The RMSE and MAPE of the prediction step size of 20 steps are 0.7612 mmol/L and 7.3427%respectively,which can provide support for the closed-loop control system of blood glucose.
作者 滕建丽 容芷君 许莹 但斌斌 Teng Jianli;Rong Zhijun;Xu Ying;Dan Binbin(College of Machinery and Automation,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China;Fifth Hospital in Wuhan,Wuhan 430050,Hubei,China)
出处 《计算机应用与软件》 北大核心 2020年第10期107-112,共6页 Computer Applications and Software
关键词 血糖预测模型 GRU LSTM CGM Blood glucose prediction model GRU LSTM CGM
  • 相关文献

参考文献7

二级参考文献59

  • 1徐薇,黄厚宽,秦勇.基于时空数据挖掘的铁路客流预测方法[J].北京交通大学学报,2004,28(5):16-19. 被引量:16
  • 2谭满春,冯荦斌,徐建闽.基于ARIMA与人工神经网络组合模型的交通流预测[J].中国公路学报,2007,20(4):118-121. 被引量:68
  • 3The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J].{H}New England Journal of Medicine,1993,(14):977-986.
  • 4Cryer PE. Hypoglycemia,functional brain failure,and brain death[J].{H}Journal of Clinical Investigation,2007,(04):868-870.
  • 5De Block C,Vertommen J,Manuel-y-Keenoy B. Mi-nimally-invasive and non-invasive continuous glucose monitoring systems:indications,advantages,limitations and clinical aspects[J].Curr Diabetes Rev,2008,(03):159-168.
  • 6Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes[J].{H}New England Journal of Medicine,2008,(14):1464-1476.
  • 7Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. The effect of continuous glucose monitoring in well-controlled type 1 diabetes[J].{H}DIABETES CARE,2009,(08):1378-1383.
  • 8Pickup J,Keen H. Continuous subcutaneous insulin infusion at 25 years:evidence base for the expanding use of insulin pump therapy in type 1 diabetes[J].{H}DIABETES CARE,2002,(03):593-598.
  • 9Albisser AM,Leibel BS,Ewart TG. Clinical control of diabetes by the artiifcial pancreas[J].{H}DIABETES,1974,(05):397-404.
  • 10Porter PA,Keating B,Byrne G. Incidence and predictive criteria of nocturnal hypoglycemia in young children with insulin-dependent diabetes mellitus[J].{H}Journal of Pediatrics,1997,(03):366-372.

共引文献141

同被引文献31

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部