期刊文献+

大数据环境下计算机网络安全技术的优化策略 被引量:12

Optimization Strategy of Computer Network Security Technology in Big Data Environment
下载PDF
导出
摘要 随着信息技术的飞速发展,大数据时代正式来临。它正从方方面面影响着大家的生活。然而,大数据的发展也为非法元素带来了机会。为计算机网络带来了诛多的不安定因素。因此,如何在大数据环境下保障计算机网络的安全性就显的尤为重要。文章从网络安全技术的应用及网络安全系统功能的改进两方面进行阐述,说明如何增强计算机网络安全的安全性。 With the rapid development of information technology,the era of big data is coming.It is affecting everyone's life in all aspects.However,the development of big data also brings opportunities for illegal elements.For the computer network has brought many unstable factors.Therefore,how to ensure the security of computer network in big data environment is particularly important.This paper expounds the application of network security technology and the improvement of network security system function,and explains how to enhance the security of computer network security.
作者 李飞 LI Fei(Jiyuan Vocational and Technical College,Department of Information Engineering,Jiyuan 459002,China)
出处 《电脑与信息技术》 2020年第5期66-68,共3页 Computer and Information Technology
基金 济源市科技攻关项目(项目编号19023031)。
关键词 大数据环境 计算机 网络安全技术 优化策略 big data environment the computer network security technology optimization strategy
  • 相关文献

参考文献3

二级参考文献21

  • 1国家计算机病毒应急处理中心.2008年全国信息网络安全状况与计算机病毒疫情调查分析报告[R].[2008-10].http://www.antivirus-china.org.cn/head/diaocha2008/report1.ppt.
  • 2金山毒霸.2008年中国电脑病毒疫情及互联网安全报告[R].[2009-02].http://news.duba.net/contents/2009-02/05/6235.html.
  • 3AJITH A, RAVI J, JOHNSON T. D-SCIDS: Distributed soft computing intrusion detection system [ J ]. Journal of Network and Computer Applications, 2007,30 : 81-98.
  • 4ABRAHAM A, JAIN R, SANYAL S. SCIDS: a soft computing intrusion detection system [ C ]. Sixth international workshop on distributed computing (IWDC 2004). Lecture Notes in Computer Science, Germany, Springer, 2004,26:252-257.
  • 5SHAH K, DAVE N, CHAVAN S. Adaptive Neuro-Fuzzy Intrusion Detection System [ C ]. IEEE International Conference on Information Technology: Coding and Computing (ITCC'04), USA, IEEE Computer Society, 2004( 1 ) :70-74.
  • 6MUKKAMALA S, SUNG H, ABRAHAM A. Modeling Intrusion Detection Systems Using Linear Genetic Programming Approach [C]. The 17th International Conference on Industrial & Engineering Applications of Artificial Intelligence and Expert Systems, Innovations in Applied Artificial Intelligence, Robert Orchard, Chunsheng Yang, Moonis Ali ( Eds. ), Lecture Notes in Computer Science 3029, Springer Verlag, Germany, 2004:633-642.
  • 7MUKKAMALA S, SUNG H, ABRAHAM A. Intrusion Detection Systems Using Adaptive Regression Splines [ C ]. 6th International Conference on Enterprise Information Systems, ICEIS' 04, Portugal, I Seruca, J Filipe, S Hammoudi and J Cordeiro (Eds.), 2004(3) :26-33.
  • 8ABRAHAM A. Evolutionary computation in intelligent web management, evolutionary computing in data mining [ C ]. In Ghosh A, Lakhmi J, editors. Studies in fuzziness and soft computing. Germany, Springer, 2004:189-210.
  • 9ABRAHAM A, THOMAS J. Distributed intrusion detection systems: a computational intelligence approach[ C ]. In Abbass HA, Essam D, editors. Applications of information systems to homeland security and defense. USA: Idea Group Inc. Publishers, 2005 : 105-135.
  • 10CHEBROLU S, ABRAHAM A, THOMAS J. Feature deduction and ensemble design of intrusion detection systems [ C ]. computers and securitv. Amsterdam. Elsevier. 2005 (4) :295-307.

共引文献33

同被引文献50

引证文献12

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部