期刊文献+

考虑多因素的深度学习融合方法实现负荷预测 被引量:3

Load Forecasting in the Deep Learning Fusion Method Considering Multiple Factors
下载PDF
导出
摘要 综合考虑电力负荷预测受多因素影响的特性,提出一种深度学习融合方法即K近邻和长短期记忆网络融合模型(KNN-LSTM)实现电力负荷预测。为了充分挖掘影响电力负荷预测的关键因素,引入了KNN算法衡量各因素与负荷数据之间的欧式距离以遴选最邻近的K个负荷影响因素,基于选取的负荷因素数据构建监督学习数据集,引入LSTM模型实现了电力负荷高精度预测。结果表明,KNN-LSTM方法可以有效地提取关键负荷因素并获得良好的预测性能。 Considering that power load forecasting is affected by many factors,a deep learning fusion method,namely K-nearest neighbor and long short term memory(KNN-LSTM),was proposed to realize power load forecasting.In order to fully mine key factors affecting power load forecasting,KNN algorithm was introduced to measure the Euclidean distance between each factor and load data to select the nearest K load-influencing factors.Based on the selected load factor data,the supervisory learning data set was constructed,and an LSTM model was introduced to achieve high-precision power load forecasting.The results showed that the proposed KNN-LSTM method could effectively extract key load factors and achieve good prediction performance.
作者 徐先峰 陈雨露 王研 王世鑫 Xu Xianfeng;Chen Yulu;Wang Yan;Wang Shixin(College of Electronics and Control Engineering,Chang’an University,Xi’an Shaanxi 710064,China)
出处 《电气自动化》 2020年第5期61-63,共3页 Electrical Automation
关键词 负荷预测 深度学习 多因素 K近邻 长短期记忆网络 load forecasting deep learning multi-factor K-nearest neighbor(KNN) long short term memory(LSTM)
  • 相关文献

参考文献5

二级参考文献55

共引文献257

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部