期刊文献+

基于改进PDR与RSSI融合的定位算法 被引量:7

Positioning Algorithm Based on Improved PDR and RSSI Fusion
下载PDF
导出
摘要 在室内定位系统中,基于接收信号强度指示(RSSI)测距定位系统接收到的信号会因环境的不确定性出现不可预测的随机变化,行人航位推算(PDR)定位系统存在错误地估计传感器的参数及左右脚运动不一致等产生累积误差的问题。针对上述问题,提出一种基于改进PDR与RSSI融合的定位算法,根据PDR定位的递归特性校正估计传感器的参数,同时进行左右脚坐标数据融合,在此基础上将扩展卡尔曼滤波器(EKF)作为RSSI和PDR定位的融合滤波器,以降低PDR累计误差,从而提高定位精度,获得系统的最优定位结果。实验结果表明,该融合定位算法有效地提高了定位精度。 In the indoor positioning system,based on the received signal strength indication(RSSI)the signal received by the ranging and positioning system will undergo unpredictable random changes due to the uncertainty of the environment.The pedestrian dead reckoning(PDR)positioning system has incorrectly estimate of the sensor's parameters and the inconsistent movement of the left and right feet produced cumulative error problem.In view of the above problems,a positioning algorithm based on the fusion of improved PDR and RSSI is proposed.The parameters of the estimated sensor are corrected according to the recursive characteristics of PDR positioning,and the data of the left and right foot coordinates are fused.On this basis,the Extented Kalman filter(EKF)will be used as a fusion filter for RSSI and PDR positioning to reduce the cumulative error of PDR,thereby improving positioning accuracy and obtaining the optimal positioning result of the system.Experimental results show that the fusion positioning algorithm effectively improves the positioning accuracy.
作者 郭娅婷 杨君 甘露 GUO Yating;YANG Jun;GAN Lu(Engineering Research Center qf Metallurgical Automation and Measurement Technology,Ministry qf Education,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2020年第7期1027-1032,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61701354)。
关键词 室内定位 扩展卡尔曼滤波 行人航位推算 融合定位 indoor positioning extended Kalman filtering pedestrian dead reckoning fusion positioning
  • 相关文献

参考文献4

二级参考文献117

  • 1尹康银,宋自林,徐平.Ontology mapping based on hidden Markov model[J].Journal of Southeast University(English Edition),2007,23(3):389-393. 被引量:2
  • 2Thurston J. GALILEO, GLONASS and NAVSTAR A Report on GPS for GIS People[C]//Proc. of GISCafe’02[S. 1.]: IEEE Press, 2002.
  • 3Gu Y, Lo A, Niemegeers I. A Survey of Indoor Positioning Systems for Wireless Personal Networks[J]. IEEE Com- munications Surveys & Tutorials, 2009, 11(1): 13-32.
  • 4Bekkali A. RFID Indoor Positioning Based on Probabilistic RFID Map and Kalman Filtering[C]//Proc. of WiMOB’07[S. 1.]: IEEE Press, 2007.
  • 5Bahl P, Padmanabhan V. RADAR: an In-building RF-based User Location and Tracking System[C]//Proc. of IEEE INFOCOM’00. Tel Aviv, Israel: IEEE Press, 2000: 775-784.
  • 6King T, Kopf S, Haenselmann T. COMPASS: A Probabilistic Indoor Positioning System Based on 802.11 and Digital Compasses[C]//Proc. of the 1st ACM Int’l Workshop on WiNTECH’06. Los Angeles, USA: [s. n.], 2006.
  • 7Collin J, Mezentsev O, Lachapelle G, et al. Indoor Positioning System Using Accelerometry and High Accuracy Heading Sensors[C]//Proc. of GPS/GNSS Conference. Portland, USA: [s. n.], 2003.
  • 8Cliff C, Muller H. Personal Position Measurement Using Dead Reckoning[C]//Proc. of the 7th Int’l Symposium on Wearable Computers. New York, USA: [s. n.], 2003: 166-173.
  • 9Beauregard S, Haas H. Pedestrian Dead Reckoning: A Basis for Personal Positioning[C]//Proc. of the 3rd Workshop on Positioning, Navigation and Communication. Hannover, Germany: [s. n.], 2006: 27-35.
  • 10Jin Y, Motani M, Soh W, et al. SparseTrack: Enhancing Indoor Pedestrian Tracking with Sparse Infrastructure Support[C]// Proc. of IEEE INFOCOM’10. San Diego, USA: [s. n.], 2010: 1-9.

共引文献37

同被引文献58

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部