摘要
依据Gerschgorin定理,对于非奇异M-矩阵Hadamard积的最小特征值下界,给出只与矩阵元素相关且容易计算的新估计式,并从理论和例子两个方面进行分析,以表明本文的新估计式在某些条件下改进了Fiedler和Markham的结论,同时也优于其他的一些结论。
According to Gerschgorin theorem,for the lower bound of the minimum eigenvalue of the non-singular matrix Hadamard product,a new estimation formula which is only related to the matrix elements and easy to calculate is given.It is also analyzed from two aspects of theory and examples to show that the new estimation formula in this paper improves the conclusions of Fiedler and Markham under some conditions,and is also superior to some other conclusions.
作者
陈付彬
CHEN Fubin(Science Department,Kunming University of Science and Technology Oxbridge College,Kunming 650106,China)
出处
《贵州大学学报(自然科学版)》
2020年第5期18-21,共4页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金资助项目(11501141)
云南省教育厅科学研究基金资助项目(2018JS747)。