摘要
提出了能量管理策略优化方法,通过深度强化学习中的深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法调整等效因子,以提高燃油利用率,达到SOC保持与油耗降低的目标。受到边缘计算架构启发,建立了基于并行的深度强化学习算法以加快学习速度。在FTP72工况的仿真结果表明:提出的算法使油耗相对基于PID控制器的传统A-ECMS算法降低了7.2%,而以边缘计算架构建立的并行深度强化学习算法使收敛速度提高了334%。
In this paper,the proposed energy management strategy optimization method is adopted with the Deep Deterministic Policy Gradient(DDPG)algorithm to adjust the equivalent factor,in order to improve fuel efficiency and achieve the objectives of SOC maintenance.In addition,inspired by the edge computing framework,a parallel deep reinforcement learning algorithm is established to accelerate the learning speed.The simulation results under FTP72 driving cycle show that the proposed algorithm can reduce fuel consumption by 7.2%compared with the traditional A-ECMS algorithm based on a PID controller,and the parallel deep enhancement learning algorithm based on edge computing framework increases the convergence speed by 334%.
作者
李家曦
孙友长
庞玉涵
伍朝兵
杨小青
胡博
LI Jiaxi;SUN Youchang;PANG Yuhan;WU Chaobing;YANG Xiaoqing;HU Bo(Key Laboratory of Advanced Manufacturing Technology for Automobile Parts,Ministry of Education,Vehicle Engineering Institute,Chongqing University of Techmology,Chongqing 400054,China;Ningbo Yinzhou DLT Technology Co.,Ld.,Ningbo 315100,Chna)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2020年第9期62-72,共11页
Journal of Chongqing University of Technology:Natural Science
基金
国家自然科学基金项目(51905061)
中国博士后科学基金项目(2020M671842)
重庆市自然科学基金项目(cstc2019jcyj-msxm X0097)
重庆市教育委员会科学技术研究项目(KJQN201801124)
内燃机燃烧学国家重点实验室开放课题(k2019-02)。