期刊文献+

一种满足能效的云任务调度算法

A cloud tasks scheduling algorithm satisfying energy-efficiency
下载PDF
导出
摘要 提出一种高能效的云任务调度算法。首先,计算任务优先级,根据优先级得到任务调度次序,并以最早完成时间或最小计算时间为原则,依次为任务选择调度资源形成初始调度方案。然后,计算初始调度方案下的资源能效值,从资源集合中移除能效值最低的资源,并关闭该资源。最后,更新可用资源集,进行任务重调度,即重新以最早完成时间或最小计算时间为原则为任务选择最优调度资源,完成任务调度。算例测试结果表明,算法在资源同质和异构条件下均可在不增加任务调度跨度的同时降低任务执行的总体能耗,节省资源的能源开销。 A high energy-efficiency cloud tasks scheduling algorithm is presented.First,the task priority is computed,and the task scheduling order is obtained according to the task priority.Based on earliest finish time or minimum computing time,our algorithm selects the resource for the scheduled task in turn and generates an initial scheduling scheme.Then,the resource energy-efficiency value of the initial scheduling scheme is computed and the resource with the lowest energy-efficiency value is removed from the resource set.And the resource is turned off.Finally,the available resource set is updated and the tasks are re-scheduled,i.e.,based on earliest finish time or minimum computing time once again,the algorithm selects the optimal scheduling resource and finishes the tasks scheduling.The example test results show that,under the condition of homogeneous resource and heterogeneous resource,our algorithm can reduce the total energy consumption of tasks execution and save the energy of resource without increasing the tasks scheduling makespan.
作者 张小庆 刘仁峰 ZHANG Xiao-qing;LIU Ren-feng(School of Mathematics and Computer Science,Wuhan Polytechnic University,Wuhan 430023,China)
出处 《武汉轻工大学学报》 2020年第4期59-66,共8页 Journal of Wuhan Polytechnic University
基金 湖北省自然科学基金项目(2018CFB407) 教育厅科技计划项目(B2018083) 武汉轻工大学校立科研项目(2019y07)。
关键词 云计算 任务调度 高能效 任务优先级 能效值 cloud computing tasks scheduling high energy-efficiency task priority energy-efficiency value
  • 相关文献

参考文献2

二级参考文献36

  • 1McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf.
  • 2Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268].
  • 3Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414.
  • 4Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69].
  • 5Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197].
  • 6Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665].
  • 7Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739].
  • 8Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017].
  • 9Eeonomou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-System power analysis and modeling for server environments. In: Proc. of the l 4th Int' 1 Syrup. on Computer Architecture. IEEE, 2006, 70-77. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.84. 1332.
  • 10Lewis AW, Ghosh S, Tzeng NF. Run-Time energy consumption estimation based on workload in server systems. HotPower, 2008, 8:17-21. https://www.usenix.rg/egay/events/htpwer8/teh/fuMapers/ewis/ewis-htm/.

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部