期刊文献+

基于深度置信网络的轨道电路剩余寿命预测 被引量:2

Residual life prediction of track circuit based on depth believe network
下载PDF
导出
摘要 通过对影响轨道电路运行状态的设备进行分析,构建深度置信网络对微机监测系统记录的轨道电路运行数据及实测数据进行特征提取。采用权重分配的方式结合多种影响设备运行状态的因素计算反映轨道电路运行状态的健康评估指标,通过健康评估指标对轨道电路的运行状态进行划分,根据全生命周期的历史运行数据构建其各个状态的隐半马尔可夫模型。结合深度置信网络对轨道电路的退化状态和剩余寿命进行仿真试验。研究结果表明:采用融合深度置信网络进行特征提取后训练的隐半马尔可夫模型进行剩余寿命预测准确度和退化状态识别率相比原始隐半马尔可夫模型有较大的提高。 In this paper,through the analysis of the equipment that affects the running state of the track circuit,the in-depth confidence network was constructed to extract the characteristics of the running data and the measured data of the track circuit recorded by the microcomputer monitoring system,and the health assessment index reflecting the running state of the track circuit was calculated by the way of weight distribution combined with a variety of factors that affect the running state of the equipment,and the track was evaluated by the health assessment index.The operation state of the circuit was divided.The hidden semi-Markov model of each state was constructed according to the historical operation data of the whole life cycle,and the degradation state and the remaining life of the track circuit were simulated with the depth confidence network.The test results show that the hidden semi-Markov model trained after feature extraction is used to predict the remaining life.Compared with the original hidden semi Markov model,the accuracy and the degraded state recognition rate are greatly improved.
作者 刘伯鸿 孙浩洋 李振环 LIU Bohong;SUN Haoyang;LI Zhenhuan(School of Automatic&Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Tieke Yingmai Technology Co.,Ltd.,Beijing 100081,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2020年第9期2387-2396,共10页 Journal of Railway Science and Engineering
基金 国家自然科学基金地区项目(61661027,61664010)。
关键词 轨道电路 深度置信网络 HSMM 剩余寿命 退化状态 track circuit deep believe net HSMM residual life degradation state
  • 相关文献

参考文献4

二级参考文献38

  • 1高丽华,郭建英.基于威布尔分布的金属化电容器寿命数据分析及参数估计[J].硅谷,2009,2(8):16-18. 被引量:6
  • 2韩帮军,范秀敏,马登哲.生产系统设备预防性维修控制策略的仿真优化[J].计算机集成制造系统,2004,10(7):853-857. 被引量:9
  • 3VAN HORENBEEK A, PINTELON L. A dynamic predictive ma- intenance policy for complex multi-component systems[J]. Reliabil- ity Engineering System Safety,2013,120(12) :39-50.
  • 4DONG M, HE D. A segmental hidden semi-Markov model (HSMM) based diagnostics and prognostics framework and methodology[J]. Mechanical Systems and Signal Processing, 2007,21 (5) : 2248-2266.
  • 5LU S, LU H, KOLARIK W. Multivariate performance relia- bility prediction in real-time[J]. Reliability Engineering g Sys- tem Safety,2001,72(1) :39-45.
  • 6SUN J, ZUO H, WANG W, PECHT M. Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2012,28(4) : 585-596.
  • 7WANG W, CHRISTER A. Towards a general condition bas- ed maintenance model for a stochastic dynamic system[J]. Journal of the Operational Research Society, 2000, 51 ( 2 ) : 145-155.
  • 8WANG W, ZHANG W. A model to predict the residual life of aircraft engines based upon oil analysis data[J]. Naval Re- search Logistics,2005,52(3) :276-284.
  • 9NIU G, YANG B. Intelligent condition monitoring and prog- nostics system based on data fusion strategy[J]. Expert Sys- tems with Applications, 2010,37 (12) : 8831-8840.
  • 10CAESARENDRA W, WIDODO A, THOM P H, YANG B S. Combined probability approach and indirect data-driven method for bearing degradation prognostics[J]. IEEE Trans action on Reliability,2011,60(1) : 14 20.

共引文献34

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部