期刊文献+

融合多视角信任的个性化推荐算法 被引量:3

Personalized recommendation algorithm based on multi-perspective trust
下载PDF
导出
摘要 为了提高传统协同过滤推荐算法推荐的准确度,对评分信任和社交信任赋予自适应的权重,结合概率矩阵分解算法,提出一种综合的个性化推荐算法.该算法在Filmtrust数据集上进行验证,并与相关算法进行对比,结果表明所提算法在MAE(mean absolute error)和RMSE(root mean squared error)指标上均得到有效的改进. By giving the adaptive weight to the user's trust in project score data and social trust,a comprehensive personalized recommendation algorithm combining multi-view trust and probability matrix decomposition was proposed to improve the recommendation accuracy.The algorithm was verified on the Filmtrust dataset.The results showed that the proposed algorithm was effectively improved on both MAE(mean absolute error)and RMSE(root mean squared error)indicators compared with related algorithms.
作者 任志波 王亚文 魏翔宇 管成康 REN Zhibo;WANG Yawen;WEI Xiangyu;GUAN Chengkang(Liberal Arts Comprehensive Experimental Center,Hebei University,Baoding 071002,China;College of Management,Hebei University,Baoding 071002,China;School of Humanities and Sciences,Northeast Petroleum University,Daqing 163318,China;School of Information Science and Technology,Xiamen University Malaysia,Sepang 43900,Selangor Darul Ehsan,Malaysia)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2020年第5期552-560,共9页 Journal of Hebei University(Natural Science Edition)
基金 国家社会科学基金资助项目(17BJY116) 河北省社会科学基金资助项目(HB19TQ011)。
关键词 信任 概率矩阵分解 协同过滤 个性化推荐 trust probabilistic matrix factorization collaborative filtering personalized recommendation
  • 相关文献

参考文献12

二级参考文献121

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2彭泗清.信任的建立机制:关系运作与法制手段[J].社会学研究,1999(2):55-68. 被引量:381
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4Ricci F, Rokach L, Shapira B, et al. Recommender Systems Handboo[M]. Berlin: Springer, 2011:145-186.
  • 5Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model[C]//Proe of the 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2008 : 426-434 Mobasher B, Burke R, Sandvig J. Model-based collaborative filtering as a defense against profile injection.
  • 6attacks [C] // Proc of the 21st National Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2006:1388-1393.
  • 7Sandvig J, Mobasher B, Burke R. Robustness of collaborative recommendation based on association rule mining [C] //Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:105-112.
  • 8Mehta B, Hofmann T, Nejdl W. Robust collaborative filtering [C]//Proc of the 2007 ACM Conf on Recommender Systems. New York: ACM, 2007:49-56.
  • 9Pitsilis G, Marshall L. A model of trust derivation from evidence for use in recommendation systems, CS-TR-874 [R]. Newcastle, UK: University of Newcastle Upon Tyne, 2004.
  • 10Pitsilis G, Marshall L. Modeling trust for recommender systems using similarity metrics [C] //Proc of IFIPTM 2008. Berlin: Springer, 20081 103-118.

共引文献413

同被引文献31

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部