摘要
粉煤灰既是-种固体废弃物,也是一种优良的岩土材料。作为岩土材料,最大干密度和比重是其最重要的两个工程特性指标。本文利用支持向量机这一软计算技术,建立了粉煤灰最大干密度和比重的预测模型。以相关系数R和效率系数E作为评判模型预测精度的指标,研究结果表明,本文提出的支持向量机模型比现有的人工神经网络模型更为有效。
The fly ash is not only a kind of solid waste,hut also an excellent material in geotechnical engineering.The maximum dry density and specific gravity are two most important engineering characteristic indices.The paper has established a fly ash maximum dry density and specific gravity prediction model through support vector machine(SVM)soft computing technology.Taking the correlation coefficient R and efficiency coefficient E as model prediction accuracy assessment indices has assessed the paper suggested SVM model is more effective than now available artificial neural network model.
作者
王春玲
Wang Chunling(China Energy and Chemical Industry(Guizhou)Construction Holding Co.Ltd.,Guiyang,Guizhou 550029)
出处
《中国煤炭地质》
2019年第S02期14-17,30,共5页
Coal Geology of China