期刊文献+

图像搜索引擎的功能与存在的风险

下载PDF
导出
摘要 图像搜索引擎,即互联网中以获取图像信息为目标的专业搜索引擎。在“读图时代”,用户所能接触到的可视化信息达到了前所未有的量级,传统的搜索方式已无法满足用户需求,可高效获取信息的图像搜索引擎应运而生。
出处 《青年记者》 北大核心 2020年第26期107-108,共2页 Youth Journalist
  • 相关文献

参考文献1

二级参考文献66

  • 1Andreopoulos A, Tsotsos J K. 50 years of objectrecognition: Directions forward [J]. Computer Vision andImage Understanding, 2013,117(8) : 827-891.
  • 2Russakovsky 0,Deng Jia, Su Hao,et al. ImageNet: Largescale visual recognition challenge [J]. International Journalof Computer Vision,2015,115(3) : 211-252.
  • 3Zhou Bolei,Lapedriza A,Xiao Jianxiong,et al. Learningdeep features for scene recognition using Places database [C]//Proc of the 28th Annual Conf on Neural InformationProcessing Systems. Cambridge, MA: MIT Press, 2014:487-495.
  • 4Xiao Jianxiong,Hays J, Ehinger K,et ai. Sun database:Large-scale scene recognition from abbey to zoo [C] //Proc ofthe IEEE Conf on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE, 2015 : 3485-3492.
  • 5Krizhevsky A, Sutskever I, Hinton G E. ImageNetclassification with deep convolutional neural networks [C] //Proc of the 26th Annual Conf on Neural InformationProcessing Systems. Cambridge MA: MIT Press, 2012 :1097-1105.
  • 6Yosinski J,Clune J, Bengio Y, et al. How transferablefeatures in deep neural networks [C] //Proc of the 28thAnnual Conf on Neural Information Processing Systems.Cambridge, MA: MIT Press, 2014 : 3320-3328.
  • 7Zeiler M D, Fergus R. Visualizing and understandingconvolutional networks [C] //Proc of the 16th European Confon Computer Vision. Berlin: Springer, 2014? 297-312.
  • 8Simonyan K, Zisserman A. Very deep convolutionalnetworks for large-scale image recognition [J], CoRR abs/1409.1556, 2014.
  • 9Szegedy C,Liu Wei, Jia Yangqing,et al. Going deeper withconvolutions [C] //Proc of the IEEE Conf on ComputerVision and Pattern Recognition. Piscataway,NJ: IEEE,2015: 1-9.
  • 10Donahue J, Jia Yangqing, Vinyals 0,et al. DeCAF : A deepconvolutional activation feature for generic visual recognition[C] //Proc of the 31st Int Conf on Machine Learning. NewYork: ACM, 2014: 647-655.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部