期刊文献+

基于双层特征的彝语数据情感自动标注方法 被引量:1

Automatic emotion annotation method of Yi language data based on double-layer features
下载PDF
导出
摘要 现有的情感自动标注方法大多仅从声学层或语言层提取单一识别特征,而彝语受分支方言多、复杂性高等因素的影响,对其使用单层情感特征进行自动标注的正确率较低。利用彝语情感词缀丰富等特点,提出一种双层特征融合方法,分别从声学层和语言层提取情感特征,采用生成序列和按需加入单元的方法完成特征序列对齐,最后通过相应的特征融合和自动标注算法来实现情感自动标注过程。以某扶贫日志数据库中的彝语语音和文本数据为样本,分别采用三种不同分类器进行对比实验。结果表明分类器对自动标注结果影响不明显,而双层特征融合后的自动标注正确率明显提高,正确率从声学层的48.1%和语言层的34.4%提高到双层融合的64.2%。 Most of the existing automatic emotion annotation methods only extract the single recognition feature from acoustic layer or language layer.While Yi language is affected by the factors such as too many branch dialects and high complexity,so the accuracy of automatic annotation of Yi language with single-layer emotion feature is low.Based on the features such as rich emotional affixes in Yi language,a double-layer feature fusion method was proposed.In the method,the emotional features from acoustic layer and language layer were extracted respectively,the methods of generating sequence and adding<Blank>units as needed were applied to complete the feature sequence alignment,and the process of automatic emotion annotation was realized through the corresponding feature fusion and automatic annotation algorithm.Taking the speech and text data of Yi language in a poverty alleviation log database as samples,three different classifiers were used for comparative experiments.The results show that the classifier has no obvious effect on the automatic annotation results,and the accuracy of automatic annotation after the fusion of double-layer features is significantly improved,the accuracy is increased from 48.1%of acoustic layer and 34.4%of language layer to 64.2%of double-layer fusion.
作者 何俊 张彩庆 张云飞 张德海 李小珍 HE Jun;ZHANG Caiqing;ZHANG Yunfei;ZHANG Dehai;LI Xiaozhen(School of Information Engineering,Kunming University,Kunming Yunnan 650214,China;School of Foreign Languages,Yunnan University,Kunming Yunnan 650206,China;School of Software,Yunnan University,Kunming Yunnan 650206,China)
出处 《计算机应用》 CSCD 北大核心 2020年第10期2850-2855,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61263043,61864004) 云南省地方本科高校基础研究联合专项基金资助项目(2017FH001⁃058)。
关键词 彝语 自动标注 情感识别 双层特征融合 扶贫 Yi language automatic annotation emotion recognition double-layer feature fusion poverty alleviation
  • 相关文献

参考文献7

二级参考文献163

  • 1孙燕,姜占才.中心消波自相关法语音基音检测[J].青海师范大学学报(自然科学版),2009,25(2):32-35. 被引量:2
  • 2张天骐,张战,权进国,林孝康.语音信号基音检测的二次谱方法[J].计算机应用,2005,25(4):934-936. 被引量:6
  • 3康世胤,段全盛,双志伟,等.HMM语音合成中基频清浊音优化算法研究[C]//全国人机语音通讯学术会议论文集.兰州:兰州大学出版社,2009:317-321.
  • 4李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15.
  • 5Seide F, LI Gang, YU Dong. Conversational speech transcription using context-dependent deep neural networks [C]// Proceedings of the International Conference on Spoken Language Processing (Interspeech). Florence, Italy, 2011: 437 - 440.
  • 6Dahl G, YU Dong, DENG Li, et al. Context-dependent pre-trained deep neural networks for large vocabulary speech recognition [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1) : 33 - 42.
  • 7Bird S, Libeman M. A formal framework for linguistic annotation [J]. Speech Communication, 2001, 33(1/2): 23 - 60.
  • 8Awazu Y, Desouza K C. Open knowledge management: Lessons from the open source revolution [J]. Journal of the American Society for Information Science and Technology, 2004, 55(11): 1016-1019.
  • 9LEE Baozhe, GE Shilun. Personalisation and sociability of open knowledge management based on social tagging [J]. Online Information Review, 2010, 34(4): 618- 625.
  • 10Sigurbjornsson B, Van Zwol R. Flickr tag recommendation based on collective knowledge [C]// Proc of the 17th International Conference on World Wide Web (WWW). New York, NJ, USA: ACM, 2008: 327-336.

共引文献232

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部