期刊文献+

一种基于密度和距离的K-means聚类算法 被引量:3

A K-means Clustering Algorithm based on Density and Distance
下载PDF
导出
摘要 针对K-means算法中对初始聚类中心和孤立点敏感的缺点,我们通过从密度和距离两个方面的改进,提出新的改进K-means算法。该算法引入特征权重,从近邻密度出发,去除孤立点对算法的影响,同时确定初始聚类中心,在距离计算过程中,引入集成簇内与簇间距离的计算方法,以提升聚类的效果。实验结果表明,该算法比传统聚类算法能够提升10%以上的聚类效果。 In order to improve the sensitivity of initial clustering centers and outliers of K-means algorithm,an improved K-means algorithm is proposed based on density and distance.In this algorithm,feature weight is introduced to remove the influence of outliers on the algorithm from the neighborhood density.At the same time,the initial clustering center is determined.In the process of distance calculation,the distance calculation method within and between clusters is introduced to improve the clustering effect.The experimental results show that this algorithm improves the clustering effect by more than 10%,compared with the traditional clustering algorithm.
作者 罗军锋 洪丹丹 LUO Junfeng;HONG Dandan(Network Information Center,Xi'an Jiaotong University,Xi'an 710049,China)
出处 《软件工程》 2020年第10期23-25,4,共4页 Software Engineering
关键词 聚类 K-MEANS 特征加权 近邻密度 孤立点 clustering K-means feature weighting neighbor density isola ted points
  • 相关文献

参考文献5

二级参考文献35

  • 1高继森,赵杰,张忠辅,张晶.增强型K-means聚类算法在入侵检测中的应用[J].微计算机信息,2008,24(9):72-73. 被引量:5
  • 2蒋盛益,李庆华.一种增强的k-means聚类算法[J].计算机工程与科学,2006,28(11):56-59. 被引量:15
  • 3袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:152
  • 4MacQueen J. Some methods for classification and analysis of multivariate observations: proc of the 5th Berkeley Symp on Math Statist[C]. 1967 : 281-297.
  • 5Kaufman J , Rousseeuw P J. Finding groups in data :an introduction to cluster analysis [M]. New York: John Wiley & Sons, 1990.
  • 6N Labroche, N Monmarche, G Venturini. A new clustering algorithm based on the chemical recognition system of ants: proc of 15th European Conference on Artificial Intelligence ( ECAI 2002 ) [ C ]. Lyon FRANCE, 2002 : 345-349.
  • 7Nicolas Labroche, Nicolas Monmarche ,Gilles Venturini Web sessions clustering with artificial ants colonies [EB/OL]. [ 2006-01-12 ]. http://www. hant. i.univtours fr/webhant/pub/LabMonVen03a. www. pdf
  • 8Nicolas Labroche, Nicolas Monmarche ,Gilles Venturini. AntClust: ant clustering and web usage ming [C]. Genetic and Evolutionary Computation, 2003 : 25-36.
  • 9Yang Y, Kamei M. Clustering ensemble using swarm intelligence: IEEE Swarm Intelligence Symposium [M]. Piscataway, NJ: IEEE Service Center, 2003: 65-71.
  • 10Parag M Kanade, Lawrence O Hall. Fuzzy ants as a clustering concept: proc of the 22nd International Conference of the North American Fuzzy Information Processing Society[C]. 2003: 227-232.

共引文献110

同被引文献33

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部