期刊文献+

基于PSO的无人艇操纵响应模型参数辨识结果优化 被引量:3

Optimization of Parameter Identification Results of USV Maneuvering Response Model Based on PSO
下载PDF
导出
摘要 为解决无人艇操纵性预报问题,基于无人艇二阶非线性响应模型,采用差分离散法设计辨识模型,在Matlab平台上采用四阶龙格库塔法进行20°Z形操纵仿真实验,利用采集的数据基于递推最小二乘算法辨识响应模型参数,并基于此辨识值提出采用粒子群算法做进一步优化,基于正弦操纵运动数据作为适应度函数数据源,优化后的各个参数精度均较以前有所提高,最后基于优化前后的辨识参数结果开展10°,20°及30°Z形、正弦以及回转仿真操纵运动,验证了利用粒子群算法能优化递推最小二乘算法的辨识结果,其优化结果能精确预报无人艇的各种操纵运动. In order to solve the problem of USV maneuverability prediction,based on the second-order nonlinear response model of USV,the identification model was designed by using the difference discrete method,and the fourth-order Runge Kutta method was used to carry out the 20°Z-shaped maneuvering simulation experiment on the Matlab platform.Using the collected data,the parameters of response model were identified based on recursive least square algorithm,and based on the identified values,particle swarm optimization was proposed for further optimization.Based on the sinusoidal manipulation motion data as the data source of fitness function,the precision of each parameter after optimization has been improved.Finally,10,20 and 30°Z-shaped,sinusoidal and rotary simulation maneuvers were carried out based on the identification parameters before and after optimization,which proves that the identification results of recursive least squares algorithm can be optimized by particle swarm optimization,and the optimized results can accurately predict various maneuvers of USV.
作者 褚式新 茅云生 董早鹏 兰继雷 姜昊 CHU Shixin;MAO Yunsheng;DONG Zaopeng;LAN Jilei;JIANG Hao(School of Transportation,Wuhan University of Technology,Wuhan 430063,China)
出处 《武汉理工大学学报(交通科学与工程版)》 2020年第5期865-869,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目(51709214) 中国博士后科学基金项目(2018M642939、2019T120693)资助。
关键词 水面无人艇 操纵响应模型 参数辨识 递推最小二乘法 粒子群算法 Unmanned Surface Vessel(USV) maneuvering response model parameter identification recursive least squares method particle swarm optimization algoritm
  • 相关文献

参考文献4

二级参考文献33

  • 1Yangyang ZHAO,Jianyun CHAI,Shien WANG,Kai SUN.Instantaneous power calculation based on intrinsic frequency of single-phase virtual synchronous generator[J].Journal of Modern Power Systems and Clean Energy,2017,5(6):970-978. 被引量:5
  • 2杨雪晶,赵希人,王显峰.基于神经网络的船舶运动建模及随机最优控制[J].系统仿真学报,2007,19(2):372-375. 被引量:4
  • 3高双,朱齐丹,李磊.基于神经网络的高速无人艇模糊PID控制[J].系统仿真学报,2007,19(4):776-779. 被引量:24
  • 4Vapnik.统计学习理论[M].张学工,译.北京:电子工业出版社,2004.
  • 5International Maritime Organization (IMO). A. 751(18), Interim Standards for Ship Manoeuvrability [S]. 1993.
  • 6International Maritime Organization (IMO). MSC. 137(76), Standards for Ship Manoeuvrability [S]. 2002.
  • 7贾欣乐,杨盐生.船舶运动数学模型一机理建模及辨识建模[M].大连:大连海事大学出版社,1999
  • 8Mahfouz A B, Haddara M R. Effect of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle [J]. Ocean Engineering (S0029-8018), 2003, 30(8): 1005-1025.
  • 9Suykens J A K, De Brabanter J, Lukas L, et al. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing (S0925-2312), 2002, 48(1-4): 85-105.
  • 10Astrom K J, Kallstrom C G. Identification of ship steering dynamics [J]. Automatica (S0005-1098), 1976, 12(1): 9-22.

共引文献69

同被引文献28

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部