期刊文献+

带裂纹功能梯度材料薄板SIFs分析的广义参数Williams单元

Williams Element with Generalized Degrees of Freedom for SIFs Analysis in Functionally Graded Material Plate with Cracks
下载PDF
导出
摘要 根据Williams级数位移场,仅考虑弹性模量E为坐标的函数,通过改变裂尖奇异区微单元刚度集成方式,推导建立了功能梯度材料薄板平面断裂分析的广义参数Williams单元新格式.结合含中心斜裂纹和边界裂纹的功能梯度材料薄板,分析了弹性模量E的分布形式、裂纹倾角及裂纹长度对裂尖应力强度因子的影响.算例结果表明:该方法能够直接且高效求解带裂纹功能梯度材料薄板的裂尖应力强度因子;当弹性模量E呈单调变化且其梯度与荷载方向平行或垂直时,分别会使中心斜裂纹两个裂尖的I型或II型应力强度因子值产生差异,而应力强度因子随裂纹倾斜角度的分布规律并不受弹性模量E的分布形式影响. According to the Williams series displacement field,only considering the elastic modulus E as a function of coordinate,a new format of Williams element with generalized degrees of freedom for the thin plane fracture analysis in a functionally graded material plate is derived by changing the integration mode of the overall stiffness of the crack tip in the singular region.Combined with a inclined crack and an edge crack contained in a functionally graded material plate,the influence of the distribution form of the elastic modulus E,the crack inclination angle and the crack length on the stress intensity factor at the crack tip is analysed.The results show that the method can directly and efficiently solve the crack tip stress intensity factor of the functionally graded material with cracks.When the elastic modulus E changes monotonically and its gradient is parallel to or vertical to the load direction,the stress intensity factors of mode I or mode II at the two crack-tips of the central inclined crack are different,and the distribution of stress intensity factors with the crack inclination angle is not affected by the distribution form of elastic modulus E.
作者 徐华 杨涛 韩林君 杨绿峰 XU Hua;YANG Tao;HAN Lin-jun;YANG Lu-feng(School of Civil Engineering and Architecture/Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education/Guangxi Key Laboratory of Disaster Prevention and Engineering Safety,Guangxi University,Nanning 530004,China;Power China Central China Electric Power Engineering Co.,Ltd.,Zhengzhou 450007,China;Department of Housing and Urban-Rural Development,Guangxi Zhuang Autonomous Region,Nanning 530028,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第10期1476-1482,1490,共8页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金重点资助项目(51738004) 广西自然科学基金资助项目(2019GXNSFAA245012) 工程防灾与结构安全教育部重点实验室系统性研究资助项目(2016ZDX06).
关键词 功能梯度材料 应力强度因子 广义参数Williams单元 弹性模量 奇异区 functionally graded material stress intensity factor Williams element with generalized degrees of freedom elastic modulus singular region
  • 相关文献

参考文献3

二级参考文献22

  • 1崔玉红,秦庆华,王建山.HT有限元在Ⅰ、Ⅱ与Ⅲ型复合弹性断裂问题中的应用[J].工程力学,2006,23(3):104-110. 被引量:2
  • 2姚松,田红旗.有限元刚度矩阵的压缩存贮及组集[J].中南大学学报(自然科学版),2006,37(4):826-830. 被引量:7
  • 3Henshe|l R D, Shaw K G. Crack tip finite elements are unnecessary [J]. International Journal for Numerical Methods in Engineering, 1975(9): 495-507.
  • 4Barsoum R S. On the use of isoparametric finite elements in linear fracture mechanics [J]. International Journal for Numerical Methods in Engineering, 1976(10): 25-37.
  • 5Williams M L. Stress singularities resulting from various boundary conditions in angular comers of plates in extension [J]. Journal of Applied Mechanics, ASME, 1952(19): 526-528.
  • 6Cheung Y K, Jiang C P. Application of the finite strip method to plane fracture problems [J]. Engineering Fracture Mechanics, 1996(53): 89-96.
  • 7应隆安.无限元方法[M].北京:北京大学出版社,1995.
  • 8Leung A Y T, Su R K L. Mode I crack problems by fractal two level finite element methods [J]. Engineering Fracture Mechanics, 1994(48): 847-856.
  • 9Xie J F, Fok S L, Leung A Y T. A parametric study on the fratal finite element method for two dimensional crack problems [J]. International Journal for Numerial Methods in Engineering, 2003(58): 631 -642.
  • 10Su R K L, Fong W J. Accurate determination of mode I and II leading coefficients of the Williams expansion by finite element analysis [J]. Finite Elements in Analysis and Design, 2005(41): 1175 - 1186.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部