期刊文献+

基于社交媒体的话题演变研究综述 被引量:7

A Survey of Topic Evolution on Social Media
原文传递
导出
摘要 【目的】对近年来基于社交媒体的话题演变研究进行分析和总结,介绍相关分析技术。【文献范围】使用关键词"Social"和"Topic Evolution"在DBLP和Semantic Scholar搜集相关文献,并使用关键词"话题演变"在CNKI数据库进行搜集,最后利用引用网络进行补充,经过筛选一共引用83篇文献。【方法】根据研究对象以及话题提取的方法对话题演变技术进行分析评述。【结果】将话题演变技术分为两个大类,6个小类,并对话题未来演变趋势进行预测分析。【局限】未对算法引入时间的方式进行详细对比分析。【结论】本文对社交媒体中的话题演变的技术进行分析总结,并发现该研究面临的挑战和未来的方向。 [Objective]This paper analyzes and summarizes recent researches about topic evolution on social media,and mainly introduces the relevant analysis techniques.[Coverage]Relevant literatures were collected in DBLP,Semantic Scholar and CNKI with the use of keywords"Social"and"Topic Evolution".Finally,a total of83 representative literatures were cited.[Methods]According to the research objects and the methods of topic extraction,the topic evolution techniques are analyzed.[Results]The techniques are divided into two categories and six subcategories,and the prediction of the topic’s trend is analyzed.[Limitations]We didn’t discuss the detailed comparative analysis of the way these techniques introduce time.[Conclusions]This paper analyzed and summarized the techniques of topic evolution on social media,and found the challenges and future directions of this research.
作者 刘倩 李晨亮 Liu Qian;Li Chenliang(School of Cyber Science and Engineering,Wuhan University,Wuhan 430075,China;CETC Key Laboratory of Aerospace Information Applications,Shijiazhuang 050081,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第8期1-14,共14页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金项目“基于深度学习的零样本和小样本文本过滤技术研究”(项目编号:61872278) 中国电子科技集团公司航天信息应用技术重点实验室开放基金项目(项目编号:SXX18629T022)的研究成果之一。
关键词 社交媒体 话题演变 趋势预测 Social Media Topic Evolution Trend Prediction
  • 相关文献

参考文献2

二级参考文献39

  • 1赵华,赵铁军,于浩,张姝.面向动态演化的话题检测研究[J].高技术通讯,2006,16(12):1230-1235. 被引量:17
  • 2Thomas Hofmann. Probabilistic latent semantic indexing[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Berkeley, CA, USA, 1999,50-57.
  • 3David M. Blei, Andrew Y. Ng, Michael I. Jordan. Latent dirichlet allocation[J]. The Journal of Machine Learning Research,2003,3: 993-1022.
  • 4T. Griffiths,M. Steyvers. A probabilistic approach to semantic representation [C]//Proceedings of the 24th Annual Conference of the Congnitive Science Society. Mahwah, NJ : Erlbaum, 2002,381-386.
  • 5M. Steyvers,T. Griffiths. Probabilistic topic models In: T. Landauer, D. S. McNamara, S. Dennis, W Kintsch (Eds.), handbook of Latent Semantic Analysis[M]. Hillsdale, NJ.. Erlbaum. 2007.
  • 6X. Wang, A. McCallum. Topic over time: A non-mark ov continuous-time model of topical trends[C]//Pro ceedings of the 12th ACM SIGKDD International Con ference on Knowledge Discovery and Data Mining Philadelphia, PA, USA, 2006: 424-433.
  • 7D. HalI,D. Jurafsky,C. D. Manning. Studying the history of ideas using topic models[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Honolulu, Hawaii, 2008,363-371.
  • 8D. M. Blei,J. D. Lafferty. Dynamic topic model[C]// Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, 2006 : 113-120.
  • 9L. Alsumait,D. Barbara,C. Domeniconi. On-line LDA : Adaptive topic models of mining text streams with applications to topic detection and tracking[C]//Proceeding of the 8th IEEE International Conference on Data Mining. Washington,DC, USA : IEEE Computer Society,2008:3-12.
  • 10楚克明.基于LDA新闻话题的演化[C]//第五届全国信息检索学术会议.上海,中国,2009:64-72.

共引文献101

同被引文献113

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部