期刊文献+

人体负重下肢助力机械外骨骼结构设计与运动学仿真 被引量:7

Design and Kinematics Analysis Simulation of Power Assisted Lower Extremity Esoskeieton
下载PDF
导出
摘要 机械外骨骼是一种能够与人体自身运动协调配合的复杂机械系统。从人体下肢结构和步态研究角度出发,提出并设计了一种适用于人体负重状态时的下肢助力机械外骨骼,在助力人体下肢运动的同时提高人体负载能力。设计以人体下肢结构为基础,利用Solidworks三维设计软件建立了下肢机械外骨骼的三维模型。之后通过对人体步态的分析,建立了人体下肢运动学模型,并通过matlab/simulink软件建模进行仿真分析,得到结果与CGA标准曲线对比验证模型正确,进而实现步态规划与轨迹控制。最后通过Solidworks/Motion对装置模型进行动力学仿真分析。结果表明,机构可以实现人体步态行走。 Mechanical exoskeleton is a complex mechanical system which can coordinate with human body motion. With the perspective of human legs structure and the research of giant,this paper proposes and designs a kind of a kind of mechanical exoskeleton assistant to legs applied to human body under load,which can improve human body’s load capacity when assisting the motion of human legs. Based on human leg structure,a 3D model of mechanical exoskeleton of legs is established by using Solidworks 3D design software. After the analysis of human gait,a kinematic model of human legs and simulated is established by matlab/simulink software,whose results are consistent with the CGA standard curve to verify that the model is correct with the purpose to realize the gait planning and trajectory control. Finally,it is carried out by Solidworks/Motion that the dynamic simulation of the model. The results show that it can achieve human giant walking with the mechanism.
作者 谢哲东 向美琦 姜立民 XIE Zhe-dong;XIANG Mei-qi;JIANG Li-min(Jilin Agricultural University,School of Engineering and Technology,Jilin Changchun 130118,China)
出处 《机械设计与制造》 北大核心 2020年第10期21-24,共4页 Machinery Design & Manufacture
基金 2016年国家级大学生创新创业训练计划项目(201610193017)。
关键词 下肢机械外骨骼 步态规划 机械结构设计 运动学仿真 Leg Mechanical Exoskeleton Gait Planning Mechanical Structure Design Kinematics Analysis Simulation
  • 相关文献

参考文献1

二级参考文献61

  • 1周安艳,李海,黄东锋,尹运冬,曹建国.视频压力式步态分析系统对正常学龄前儿童的步态分析[J].中国临床康复,2005,9(30):115-117. 被引量:14
  • 2Giaquinto S, Galli M, Nolfe G. A polynomial function of gait performance. Funct Neurol. 2007;22(1):43-46.
  • 3Boudarham J, Roche N, Pradon D, et al. Variations in kinematics during clinical gait analysis in stroke patients. PLoS One. 2013;8(6):e66421.
  • 4Lamontagne M, Beaulieu ML, Varin D, et al. Gait and motion analysis of the lower extremity after total hip arthroplasty: what the orthopedic surgeon should know. Orthop Clin North Am. 2009;40(3):397-405.
  • 5Nankaku M, Akiyama H, Kanzaki H, et al. Effects of vertical motion of the centre of mass on walking efficiency in the early stages after total hip arthroplasty. Hip Int. 2012;22(5): 521-526.
  • 6Sander K, Layher F, Anders C, et al. Gait analysis after minimally invasive total hip arthroplasty. Orthopade. 2012;41 (5):365-376.
  • 7Carmo AA, Kleiner AF, Costa PH, et al. Three-dimensional kinematic analysis of upper and lower iimb motion during gait of post-stroke patients. Braz J Med Biol Res. 2012;45(6): 537-545.
  • 8Stief F, BOhm H, Michel K, et al. ReliabUity and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols. J Appl Biomech. 2013;29(1 ):105-111.
  • 9Sagawa Y Jr, Armand S, Lubbeke A, et al. Associations between gait and clinical parameters in patients with severe knee osteoarthritis: a multiple correspondence analysis. Clin Biomech (Bristol, Avon). 2013;28(3):299-305.
  • 10Fukaya T, Mutsuzaki H, Wadano Y. Interrater Reproducibility of Knee Movement Analyses during the Stance Phase: Use of Anatomical Landmark Calibration with a Rigid Marker Set. Rehabi! Res Pract. 2013;2013:692624.

共引文献50

同被引文献61

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部